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Abstract
Despite progress in active learning, evaluation remains limited by constraints in simulation size, infrastructure, and dataset
availability. This study advocates for large-scale simulations as the gold standard for evaluating active learning models in
systematic review screening. Two large-scale simulations, totaling over 29 thousand runs, assessed active learning solutions.
The first study evaluated 13 combinations of classificationmodels and feature extraction techniques using high-quality datasets
from the SYNERGY dataset. The second expanded this to 92 model combinations with additional classifiers and feature
extractors. In every scenario tested, active learning outperformed random screening. The performance gained varied across
datasets, models, and screening progression, ranging from considerable to near-flawless results. The findings demonstrate that
active learning consistently outperforms random screening in systematic review tasks, offering significant efficiency gains.
While the extent of improvement varies depending on the dataset, model choice, and screening stage, the overall advantage
is clear. Since model performance differs, active learning systems should remain adaptable to accommodate new classifiers
and feature extraction techniques. The publicly available results underscore the importance of open benchmarking to ensure
reproducibility and the development of robust, generalizable active learning strategies.

Keywords Active learning · Systematic review · Screening phase · Large-scale simulation

1 Introduction

Methodologies used to reduce the screening labor for system-
atic reviews are continually being introduced [3, 30, 35–37,
57, 58, 60]. Particularly, the use of active learning for prior-
itization in systematic review screening [11, 23, 48, 63] has
seen significant progress and innovation. This application
of active learning has been integrated into several screen-
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ing software tools [1, 12, 24–26, 31, 41, 42, 44, 46, 59, 61,
62, 64, 66], employing a variety of machine learning models
to improve prioritization efficiency. However, while model
development has been rapid, evaluation remains inconsistent.
Additionally, many tools lack the flexibility to incorporate
different machine learning models, limiting their applicabil-
ity in research settings.

A simulation study emulates user labeling decisions using
prelabeled data, which enables the recreation of a systematic
review’s precise performance. By adjusting parameters such
as prior knowledge, feature extractors, and, classifiers and
then re-running the simulations with the same prelabeled
data, performance evaluations of machine learning models
can be conducted (where in the current paper a model refers
to a configuration comprising a feature extraction and clas-
sifier). A single simulation can provide insights, but the true
value emerges with replicability and scalability.

Empirical support for active learning in screening prioriti-
zation largely relies on simulations. While these simulations
are generally implemented adequately, many studies would
benefit from larger, broader, and more reproducible simula-
tions to strengthen their conclusions and practical relevance.
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Improving simulation quality helps maximize time savings,
as the choice ofmodel can translate into hours or even days of
work saved. However, performance simulation studies in this
field face several limitations, including minimal use of data,
a lack of diversity in studied domains, limitedmodel compar-
isons, and the use of non-standardized metrics, as shown in
the systematic review by [55]. Addressing these challenges
would improve the reliability and generalizability of active
learning in systematic review screening.

First, the median number of datasets used in simulation
studies evaluating the performance of multiple active learn-
ing models was under four datasets. The limited median
number of datasets used in these studies may constrain the
generalizability of the findings, as it is likely that the perfor-
mance for a single or couple of datasets is not interpretable
as general performance.

Some studies have incorporated multiple datasets [9, 32,
34, 68].However, studies that usemore than four datasets still
predominantly focus on medical reviews, as shown in Fig. 1.
Even the high-quality Cohen dataset [11], often considered
the gold standard in the field, is limited to drug class reviews.
Expanding the rangeof datasets beyondmedical topicswould
further enhance the generalizability of active learningmodels
across different domains and disciplines.

Third, it was found that most simulation studies that com-
pared active learning models typically involved no more
than three distinct models. From the evaluated studies, we
identified 13 combinations of well-performing classifiers
and feature extractors that are frequently utilized. Examples
of most often used classifiers include Logistic Regression,
Random Forest, and Support Vector Machines, paired with
feature extraction techniques like TF-IDF and word embed-
dings. Additionally, a review of the active learning software
tools1 reveals a predominant use of Support Vector Machine
in software.

Fourth, althoughmanymetrics exist [39],mostmajor stud-
ies focus on a single one. The most commonly used is the
Work Saved over Sampling@95% (WSS@95%)metric [11].
While useful for evaluating performance at a fixed recall
level, WSS@95% provides no insight into how a model per-
forms in scenarios such as quickly retrieving relevant records
after a cold start or identifying the last-to-find records [7, 19,
22]. Evaluating scenarios like retrieval efficiency in the first
100 papers or the ability to find the final relevant paper would
help tailor models to specific screening challenges.

These limitations set the stage for our study on the diver-
sity of data and models in simulation studies.

The SYNERGY dataset [14], used in our simulations, is
the most diverse collection of systematic review datasets
currently available. It spans multiple disciplines, including
medicine, psychology, computational sciences, and biology,

1 github.com/Rensvandeschoot/software-overview-machine-learning-for-screening-text#overview-of-available-models.

making it suitable for testing active learning methods across
fields. In addition to covering various research fields, the
dataset includes a wide range of dataset sizes and relevance
densities, allowingmodels to be tested under different screen-
ing conditions, from rare relevant records to high-prevalence
scenarios.

Moreover, newmodels are continuously being developed,
such as deep learning architectures and ensemble methods,
which show promise in various applications [5, 10, 17, 27].
However, these newer models have yet to be widely adopted
in simulation studies, which indicates a gap between model
development and their application in active learning simula-
tions.

The gap between the frequent use of certain models in
active learning software tools and their evaluation with sim-
ulation studies can largely be attributed to the complexities
involved in setting up and running simulations, especially on
a large scale. Establishing a robust simulation infrastructure
is a significant undertaking. While some software allows for
limited simulation capabilities [21], most of the code used in
the 48 simulation studies reviewed was custom-made.

To facilitate large-scale simulations, software such as
ASReview [59] is essential, enabling seamless integration
of various models. Additionally, workflow generators like
ASReview’s Makita [56] play a crucial role in setting up
repeatable and reproducible simulations. These tools make
it possible to leverage larger datasets, such as SYNERGY
[14], for more extensive evaluations. However, the scale of
such datasets results in a substantial number of simulation
runs, necessitating adequate infrastructure to ensure efficient
execution [45]. This study demonstrates the full simulation
pipeline, providing a framework for future research in active
learning for systematic review screening.

In the current study, we conduct two large-scale simula-
tions to evaluate the performance of the active learning-based
pipeline across a broad range of systematic review datasets.
The first simulation study focuses on the 13 combinations
of classifiers and feature extraction techniques identified in
the systematic review, exploring both inter- and intra-dataset
variability. These simulations use only two records to start
the active learning cycle. One relevant and one irrelevant
document, which together, are known as the Prior Knowl-
edge.

In the second simulation study, we expand our analysis to
92 feature extractor (Table 2) and classifier (Table 3) combi-
nations, selecting models that have performed well in natural
language processing but are rarely used in active learning for
systematic reviews. This includes both pretrained and newly
trained models, evaluated for their potential to improve sys-
tematic review performance and precision. The amount of
prior knowledge is increased based on findings from the first
study and insights from previous research [7].
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Fig. 1 Distribution of fields in simulation studies employing more than four datasets, as found in [53]

Our study has two key objectives:

1. To analyze variability in simulation studies, both across
datasets and within individual datasets, as well as differ-
ences between models.

2. To evaluate model performance across different phases
of the simulation: early screening, final screening, and
overall effectiveness.

1.1 Background AI aided screening

Screening prioritization is explained in [11, 59], and in-
depth in Box 1 of [29]. These offer a detailed exploration of
active learning, current simulation research, and challenges
in assessing active learning models in systematic reviews.
This background provides the context for understanding the
methods and applications of active learning.

Systematic reviews are a method for synthesizing evi-
dence to answer specific research questions [13]. This pro-
cess typically involves several phases: formulating a research
question, designing a search strategy, screening records for
relevance, and synthesizing the findings. Among these, the
screening phase, where researchers evaluate large sets of
titles and abstracts, is especially time-intensive and is the
focus of this work. Screening prioritization is part of the
PRISMA checklist, as mentioned as Priority screening in
box 3 of [40].

Active learning is a form of machine learning that does
not require a fully labeled dataset. Instead, its performance
is refined in iterative cycles through interactions with human
reviewers. At each iteration, the model requests labels from
the human reviewer, learns from that new information, and
improves its predictions. The enhanced model then selects
records more accurately, enabling the human reviewer to
label only themost informative items. This positive feedback
loop is especially suitable for systematic review screening,

which generally begins with little labeled data and generates
these labels as part of the review process.

Although an active learning cycle can start with no data,
prior knowledge accelerates initial training and avoids a cold
start. Without prior knowledge, the model must rely on ran-
dom screening. Even a small number of labeled documents
improves early performance. In practice, reviewers often
alreadyknowof some relevant documents, even if those items
do not perfectly match the research question.

In a systematic review pipeline, the model improves with
each labeling cycle, reaching sufficient accuracy to iden-
tify relevant documents earlier than random screening. This
accelerated discovery leads to an increasingly sparse distribu-
tion of relevant documents, whilemany irrelevant documents
remain. Once no new relevant items appear within a defined
interval, screening can stop, reducing the manual workload.

Throughout this work, the expression “the machine learn-
ing model”, or simply, “model”, refers to the combined
process of feature extraction and classification.

2 Methodology

2.1 Data

For both simulation studies, we use the SYNERGY dataset
[14], detailed in Table 1. SYNERGY is a dataset the highest
quality dataset available in this new field tailored for study
selection in systematic reviews. It entails multiple datasets of
scientific literature retrieved from bibliographic databases.

While this data collection is the most diverse dataset in
terms of research categories currently available, the cho-
sen data collection is still 50% “medicine, NOS,”. It does
include 3 datasets from computational sciences, 7 from psy-
chology (with and without medicine), and 3 from biology
(with medicine). In terms of number of records, datasets
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vary from 238 to 48,375 (7 very small: < 1000; 7 small:
1000−3000; 10 medium: 4000−10, 000; and 2 very large:
> 30, 000). Density of relevant records also varies from
“needle-in-a-haystack” (< 0.25%) to more than “one-in-
five” (> 20%), with fairly even representation across data
sets (4 data sets - very rare: < 0.5%; 6 - rare: 0.5−0.99%;
7 - average: 1.0−2.2%; 8 - frequent: 4−15%; 1 - abundant:
> 20%).

Each dataset corresponds to a single published systematic
review and consists of rows of data, where each row rep-
resents a scientific record (e.g., journal article, preprint, or
report). Each record contains the title, abstract, and a binary
inclusion/exclusion label (0 or 1), indicating whether the
researcher included the record in their systematic review.
These datasets provide the basis for our simulations and
reflect the results of manual screening performed during the
systematic review process.

In our context, each record corresponds to a scientific pub-
lication (e.g., journal article, report, or preprint) retrieved
from recognized bibliographic databases. Each row in the
data set contains the publication’s title, abstract, and label
(inclusion/exclusion) indicating its relevance to the system-
atic review. This structure allows us to apply screening and
classification methods consistently across different sources
and topic areas.

Given the large size of the Walker_2018 dataset (48,375
records), the number of simulations is limited to five per
model for the first study. This approach optimizes resource
allocation. For the second study, the dataset size is reduced
using a stratified sampling technique while preserving the
original class distribution. The dataset is down-sampled to
4837 records, maintaining the label ratios (before: label 0—
0.984248, label 1—0.015752; after: label 0—0.984288, label
1—0.015712). This reduction ensures more efficient use of
computational resources while retaining the representative-
ness of the data (Table 1).

2.2 Overview simulation design

We perform simulations on 26 prelabeled datasets derived
from existing systematic reviews. In the first simulation
study, we run all permutations of the relevant record, classi-
fier, feature extractor, and SYNERGY dataset. In the second
simulation study,we increase the classifier and feature extrac-
tor pool to 92 combinations but remove the relevant records
from the permutations.

Nsim, S1 = 13models · nrelevant

Nsim, S2 = 92models

Nsim, total =
ndatasets∑

i=1

(
Nsim, S1,i + Nsim, S2,i

)

The first simulation study is used to gauge the reliability and
stability of the results in preparation for the second study,
where we replace iterating over all relevant records with
running a single simulation per combination per dataset. To
combat the extra instability in this new format, we increase
the amount of prior knowledge, as the increased prior knowl-
edge will reduce the amount of performance fluctuation in
the first cycles of the simulation. Based on the findings of
[7], we set the prior knowledge to a level that ensures stabil-
ity, using a number of records that will minimize early-cycle
variability while maintaining a realistic screening scenario.

Our study aims to achieve a high degree of reproducibility
by adopting an open-source approach and making all data
and code openly accessible [29]. The simulations are run on
the open-source cloud platform Exoscale2 We developed a
custom Docker image [50], which is available to the public.
An in-depth explanation of the Docker image’s functionality
can be found on its GitHub3 The processing tasks within the
Docker image are managed using a Kubernetes cluster4

2.3 Models

The classifiers in this study are trained during runtime, both
for users using the software and for simulation studies. At
each iteration of the active learning process, a new classifier
is trained on the current set of labeled data, enabling adap-
tation to the dataset as labeling progresses. This approach
is particularly suited to systematic reviews. In this context,
which often involves frontier research, researchers are typ-
ically the first to construct the dataset as part of the review
process. Therefore, no preexisting labeled data are available
for training classifiers beforehand. The strength of the active
learning approach lies in its ability to dynamically adapt to
the data as new labels become available during the screening
process.

The methodology for feature extractor training varies.
Simpler feature extractors, such as TF-IDF and Doc2Vec,
can generate embeddings without pretraining the weights.
In contrast, transformer-based extractors, like MiniLM and
Sentence-BERT, are pretrained and used without fine-tuning
ona specificdataset, leveraging their general-purpose embed-
dings instead.

Hyperparameter optimization for the machine learning
models was not performed in this study. Instead, optimized
parameters were adopted directly from the original ASRe-

2 exoscale.com.
3 Software available at github.com/jteijema/asreview-simulation-project.
4 kubernetes.io.
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view software package where available. For models not
included in the ASReview software package, developer-
recommended settings were used.

The feature extractors utilized in the first simulation
study are TF-IDF, Doc2Vec, MiniLM, and Sentence-BERT
(all-mpnet-base-v2). The classifiers selected are Logistic
Regression, Naive Bayes, Random Forest, and Support Vec-
tor Machine. The reasoning behind the selection of these
models for the first simulations is based on frequently used
models in other simulation studies. [55].

Note that Naive Bayes cannot use feature matrices con-
taining negative vectors. As such, when feature extractors
Doc2Vec, MiniLM, or all-mpnet-base-v2 are used, which
produce negative vectors, Naive Bayes cannot be employed
as a classifier. Therefore, the only viable pairing involving
Naive Bayes is with TF-IDF, which limits the total number
of models evaluated to 13.

1. TF-IDF + Logistic Regression, TF-IDF + Naive Bayes,
TF-IDF + Random Forest, TF-IDF + Support Vector
Machine, Doc2Vec + Logistic Regression, Doc2Vec +
Random Forest, Doc2Vec + Support Vector Machine,
MiniLM + Logistic Regression, MiniLM +Random For-
est,MiniLM+ Support VectorMachine, Sentence-BERT
+ Logistic Regression, Sentence-BERT + Random For-
est, and Sentence-BERT + Support Vector Machine.

For the second study, the scope is expanded to include
additional models. MiniLM is replaced with larger models
that share a similar architecture. In total, the second study
evaluates 13 feature extractors and 8 classifiers. However,
certain limitations arise due to the nature of the embeddings
and classifiers:

• Neural networks cannot process sparse embeddings
because the input layer would need to be excessively
wide (e.g., matching the vocabulary size, which exceeds
40,000 dimensions).

• Naive Bayes cannot handle negative embeddings.

Taking these constraints into account, the total number of
combinations evaluated is calculated as follows:

• 6 classifiers compatible with all embeddings× 13 feature
extractors = 78 combinations.

• 3 Naive Bayes classifiers compatible with positive
embeddings only = 3 combinations.

• 11 neural network simulations compatible with specific
embeddings = 11 combinations.

In total, this results in 92 unique combinations evaluated in
the second study. A complete list of evaluated feature extrac-
tors is found in Table 2 and classifiers in Table 3.

Tables 2 and 3 categorize the processing speed of classi-
fiers and feature extractors during their active learning cycles.
Table 2 categorizes text embedding speeds as ‘Fast’ (sec-
onds), ‘Medium’ (minutes), or ‘Slow’ (hours) and details the
features each method extracts.

Basic methods focus on word occurrence and frequency,
while word co-occurrence and context capture relationships
between words. Semantic meaning emerges with sufficient
context, reflecting deeperword significance. Syntax analyzes
sentence structure, and attention dynamically weights word
relevance, enabling focus onmeaningful text parts. Language
agnosticism is noted for methods applicable across multiple
languages. Together, these features provide tools for inter-
preting text across various dimensions.

Table 3 similarly assigns ‘Fast’ to processing times of less
than one second per cycle, ‘Medium’ to less than three sec-
onds, and ‘Slow’ to more than three seconds. These values
were calculated from the results of this study. This analysis
is based on Table 1 from previous work [54], which presents
similar statistics. Comparisons of identical classifiers and
feature extractors between the two studies yield consistent
results, reinforcing the reliability of these findings.

2.4 Prior knowledge

In our first simulation study, we conduct one simulation
for each relevant record, together with 10 fixed irrelevant
records, using theARFI (AllRelevant - Fixed Irrelevant) tem-
plate from ASReview-Makita [56] to minimize inter-dataset
variation. This standardized method ensures consistency
across datasets and increases reproducibility for large-scale
simulation studies. The total number of simulations con-
ducted in study one is detailed in Table 1.

In the second study, we use a prior knowledge set consist-
ing of five relevant records and ten irrelevant ones, selected
at random but kept constant across models. Increasing prior
knowledge helps reduce variability caused by differences in
how informative individual prior records are.

Using the MultiModel template from Makita, we estab-
lish a consistent simulation template that encompasses every
permutation of classifiers, feature extractors, and datasets,
while ensuring that the prior knowledge remains unchanged
for each dataset.

2.5 Evaluation

The study yields two sets of results. The direct performance
results of the simulations and the meta-analyses focus on the
variability present within these findings.
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Table 3 Classifiers used in the
second phase of the simulations,
along with classifier description
and approximate speed

Name Description Speed (current study) Study

Naive Bayes Based on Bayes’ theorem with
independence assumptions
between features

Fast (0.02 s) 1 & 2

Logistic Regression Predicts probabilities for binary
outcomes based on linear
combinations of features

Fast (0.19 s) 1 & 2

k-nearest neighbors Classifies based on the majority
label among the k-nearest
samples

Fast (0.62 s) 2

Random Forest Ensemble of decision trees,
improving prediction accuracy
through averaging

Medium (1.04 s) 1 & 2

AdaBoost Boosts the performance of decision
trees through a focus on
incorrectly classified instances

Medium (2.45 s) 2

Neural Network 2 layered, fully connected. Learns
complex patterns using two
layers of interconnected nodes

Slow (5.07 s) 2

Support Vector Machine Finds the hyperplane that best
separates different classes in the
feature space. Speed depends on
dataset size

Slow (6.86 s) 1 & 2

XGBoost Scalable optimized gradient
boosting model

Slow (16.34 s) 2

2.5.1 Simulation Study 1 (reliability)

Simulation study one first assesses inter-dataset variabil-
ity and then intra-dataset variability, via the performance
results between datasets, models, and prior knowledge set-
tings. To evaluate this variability, we use the Loss across
datasets and models. Simulation study one also introduces
APD heatmaps.

Recall curves Recall curves are a common method for
visualizing simulation results, depicting the fraction of rel-
evant records found versus the fraction of screened records.
By stacking recall curves from multiple simulations, we
can better assess active learning performance. In this study,
13× 25 = 325 stacked recall curves from the first study are
available on the persistent results website.

This paper highlights a selection of these stacked recall
curves to illustrate examples of good, average, and poor per-
formance, as well as the influence of prior knowledge. The
figures include the perfect performance curve, representing
the optimal scenario where all relevant records are identified
before encountering any irrelevant ones. For datasets with a
higher proportion of relevant records, this curve is naturally
less steep.

Normalized Recall Regret The Normalized Recall Regret
metric quantifies the overall performance of an active learn-
ing model by measuring how the recall curve is distributed
between the optimal and the worst possible screening perfor-

mance. Regret is commonly used to measure the difference
between the actual performance and an ideal benchmark.
Our contribution normalizes this value resulting in a value
between 0 and 1.

Unlike point-based metrics like WSS or Recall, the Nor-
malized Recall Regret provides a holistic assessment by
evaluating the area under the recall curve (AUC) and can
therefore be treated as a loss function. It is computed as the
difference between the optimal AUC and the actual AUC,
divided by the difference between the optimal AUC and the
worst AUC.

• Optimal AUC: This is the area under a perfect recall
curve, where relevant records are identified as early as
possible. Mathematically, it is computed as

Nx × Ny − Ny × (Ny − 1)

2

where Nx is the total number of records and Ny is the
number of relevant records.

• Worst AUC: This represents the area under a worst-case
recall curve, where all relevant records appear at the end
of the screening process. This is calculated as

Ny × (Ny + 1)

2
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• Actual AUC: This is the area under the recall curve pro-
duced by the model during the screening process. It can
be obtained by summing up the cumulative recall values
for the labeled records.

Normalized Recall Regret

=
Ny ×

(
Nx − Ny−1

2

)
− ∑

Cumulative Recall

Ny × (Nx − Ny)
(1)

For simplicity and ease of interpretation, we refer to Nor-
malized Recall Regret as Loss throughout the paper, as it
quantifies the loss of recall. A loss value of 0 represents per-
fect performance, while a loss of 1 corresponds to the worst
possible performance. A loss of 0.5 indicates that themodel’s
performance is midway between these outer values. How-
ever, it does not necessarily imply random screening. While
lower loss values generally indicate better performance, the
interpretation of a specific loss score depends on how the
recall is distributed throughout the screening process.

VariabilityWevisualize the performance per dataset using
the inter-dataset boxplot. Each box in this boxplot is a
combined performance that includes all classifiers, feature
extractors, and prior knowledge settings for a single dataset.
This will provide a representation of the performance per
dataset, giving insight into inter-dataset performance varia-
tion.

To visualize intra-dataset variability, the inter-dataset box-
plot is split into 25 separate boxplots, one for each dataset
(except Walker_2018, which has too few simulations for
a fair comparison). Unlike the inter-dataset boxplot, where
model performances were combined, these dataset-specific
boxplots separate the 13models into individual boxes.Within
each boxplot, the performance range is determined solely
by the selection of prior knowledge, allowing for an assess-
ment of its impact on performance and a direct comparison
between models.

Average Pair Distance HeatmapRecall curves do not pro-
vide insights into the specific discovery order of individual
records. This limits their utility for cluster identification.
Some stacked recall curves exhibit a distinct split shape
due to unique discovery time groups, as illustrated in Fig. 2.
Here, the only variable leading to these different curves is
the specific record used as prior knowledge. We hypothesize
that these distinctive paths could be attributed to clusters of
records that are highly interrelated, yet show little correlation
to the rest of the dataset. In cases where the prior knowledge
exists in one of these clusters, the recall graph is likely to
trace the unique, separate curve.

Using Time to Discovery, we generate visualizations in
the form of heat maps. To create the heatmaps, we organize
the data from the simulations into a three-dimensional array,

Fig. 2 Hypothetical example recall curve with a clear indication for
clustering records

indexed by record ID, Time toDiscovery T D, and simulation
number n. We measure the distance between discovery for
each pair of records across all simulations, with the distance
being the number of records between the discovery of a first
and second record, defined as

di, j = |TDi − TD j | (2)

where TDi and TD j are the Time to Discovery of the first and
second records, respectively, and di, j represents the absolute
difference between TDi and TD j .

We compute the log-transformed average across simula-
tions to create the Average Pair Distance (APD) array using

APDi, j = ln

(
1

N

N∑

n=1

di, j,n

)

In this array, both axes correspond to record IDs i and j for
all IDs, and each cell value denotes the average distance in
the discovery sequence between two specific records.APDi, j

denotes the log-transformed average pair distance between
records i and j , N is the total number of simulations, and
di, j,n is the distance between records i and j for simulation
n.

The data are then visualized as a color-coded heatmap.
The APD heatmap can be sorted by the average discovery
sequence to present a clear view of potential ‘hotspots’—
clusters of records that appear closely related in their
discovery sequence, but relatively independent from the rest
of the dataset.

2.5.2 Simulation Study 2 (performance)

The second study evaluates the performance of 92 models
across three key stages of the screening process. The analy-
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sis begins with ranking models based on Loss. Next, overall
performance is assessed by examining effectiveness at dif-
ferent points along the WSS curve. Starting performance is
measured to identify models that excel at retrieving rele-
vant records early in the process (first 100 records), which
is particularly important for mitigating the cold start prob-
lem in active learning. Finally, Last-to-Find performance is
analyzed to determine how well models identify the most
challenging records in the final stages.

Overall PerformanceOverall performance is evaluated by
plotting Work Saved over Sampling values in increments
from WSS@10% to WSS@100%, capturing each model’s
trajectory throughout the screening process. While previous
analyses focused on Loss, this evaluation measures WSS at
predefined thresholds for a more complete assessment.

A heatmap of the top 20 performing models is presented,
followed by a graph showingWSS across all models. If even
more granular data is desired, we present an interactive per-
sistentwebsite. 5 A sample of this interactivewebsite is given.

Starting Performance To assess which models perform
best in the early stages of screening, the number of rele-
vant records identified within the first 100 screened records
(including prior knowledge) is measured. This benchmark is
based on expert analysis indicating that approximately 100
records can be screened within an hour. This approach helps
us pinpoint the models that are most suitable for active learn-
ing sessions where time is limited. Effectively, we count the
number of relevant records with a Time to Discovery (TD)
[19] below 100 for each simulation.

Akey challenge in active learning is the cold start problem,
where models initially lack sufficient training data to make
accurate relevance predictions. The starting performance
metric helps assess how well different models overcome
this limitation by effectively utilizing prior knowledge and
quickly retrieving relevant records.

The theoretical lower bound for this metric is 5 relevant
records, as each simulation begins with 5 relevant records
provided as prior knowledge. The theoretical upper bound is
given by:

1

26

26∑

d=1

(min(rd , (100− 10))) = 50.84

where d represents the datasets and rd represents the total
number of relevant records for each dataset. Since 10 irrel-
evant records are included as prior knowledge, they are
subtracted from the 100-record maximum. This calculation
results in a theoretical upper limit of 51 records found.

Starting performance is particularly relevant for end-
users under time constraints, such as those conducting rapid

5 Live: https://jteijema.github.io/synergy-simulations-website/
models.html, Persistent: http://doi.org/10.5281/zenodo.13169790.

reviews or exploratory screening.While prior knowledge can
help mitigate the cold start problem in active learning, its
availability varies. When prior knowledge is limited, models
with strong starting performance become important, as they
are better able to retrieve relevant studies early in the process.

In the same time-sensitive scenarios, feature extractor
computational speed also becomes a factor. Faster embed-
dings enable a quicker start, allowing for more screening
within a limited time frame. Models that combine high start-
ing performance with low computational cost are therefore
the most suitable for time-constrained tasks.

Last-to-Find Performance The last-to-find section looks
at the WSS@100% metric, which evaluates the work saved
when all relevant records are found. Thiswill identifymodels
that are most effective at finding the final relevant records in
the screening process. A bar chart ranks models based on
WSS@100% performance values, with additional analysis
on embedding calculation speed to illustrate the trade-offs
between model complexity and computational cost.

For end-users of active learning in systematic review sup-
port, last-to-find performance is particularly relevant. This
metric is critical because active learning aims to optimize the
search process, stopping the screeningwhen the stopping rule
is triggered.Minimizing the number of missed records at this
point is essential to avoidmissing relevant records. The num-
ber of missed records depends, in effect, on the stopping rule
and the model’s performance in identifying the final relevant
records [6]. If a model excels at finding easily identifiable
papers but struggles with more difficult ones, it may lead to
a gap in discovery, leading to an overestimation of dataset
sparsity. This can occur if the model is overly focused on
easily classified records and lacks robustness against noise,
potentially causing relevant studies to remain undetected.

Beyond ranking models by their ability to find difficult
records, the analysis also shows the trade-off between model
performance and computational requirements. More com-
plex models may improve retrieval but also require greater
computational resources, which affects practical implemen-
tation.

2.6 Infrastructure

The simulations are performed using the simulation function-
ality of ASReview (simulation 1: v1.2, simulation 2: v1.5)
[15], and facilitated through aKubernetes cluster powered by
4 CPU-optimized processing nodes, amassing a total of 128
processing cores. The simulations are executed in a cloud
infrastructure, and the results are stored in a persistent S3
bucket.

Our procedure is primarily a juggling act between manag-
ing the element sizes on the cluster and controlling simulation
overhead. On one hand, packing all simulations into a sin-
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gle pod6 is inadvisable due to the inherent strength of
Kubernetes being its ability to distribute tasks across pods.
Conversely, segmenting all simulations into individual pods
leads to unmanageable processing overhead by necessitat-
ing a distinct simulation environment for each job. Although
workload queue systems presented a viable option, this intro-
duces significant complexity and is, based on literature, opted
against [45]. We establish a system wherein a single pod is
set up for a single template run. In the first simulation study,
the template provided to the pod is the ARFI template, and
for the second study the MultiModel template.

Step-by-step We provide a detailed step-by-step guide of
the simulation execution process:

• Job files7 are created for each combination of variables
under investigation.

• These job files are automatically dispatched to the cluster
for processing.

• Each job is allocated a minimum of four CPU cores. If
the cluster has sufficient memory resources available, the
job is provided with the necessary processing power. If
not, it is kept waiting in a jobs queue.

• The Docker image generates a Makita workflow specific
to the dataset and models, as designated in the job.

• Following this, the cluster proceeds to run all simulations
detailed in the Makita workflow using the ASReview
simulation back-end and subsequently extracts the sim-
ulation metrics.

• These metrics are sent to an S3 storage bucket, pro-
viding a repository from which further analysis can be
performed.

2.7 Availability of results and replicability

The visualization results of this simulation study are made
available as a GitHub Page [52]. The webpage features recall
curves for each simulation conducted during the study, cov-
ering all datasets. It also covers the per-model performance
for each classifier and feature extractor used in this study.
This totals 325 stacked recall graphs for simulation study
one, representing the 27001 recall curves collectively, and
21 stacked model performance graphs for study two. These
visuals allow any researcher to dissect and analyze our study

6 A “pod” in Kubernetes refers to a single instance of a running pro-
cess or application. It is the smallest and simplest unit of deployment
in Kubernetes, encapsulating one or more containers and associated
resources. Pods enable the grouping and management of containers
within a Kubernetes cluster.
7 A “job” in Kubernetes refers to a resource that manages the execution
of a specific task or job within a cluster. It represents a one-time task
that runs to completion, rather than continuously running like other
Kubernetes resources. A job ensures that a pod completes the assigned
task before considering the job as finished.

results in depth. The persistent repository includes the neces-
sary instructions to run the website locally using the Python
built-in web server functionality, allowing further users to
easily re-host the website and its functionality in the event
the website is no longer available.

To promote research persistence and replicability, all raw
results from this study are made available on DataverseNL
[51]. By providing these resources, we aim to encourage fur-
ther exploration and utilization of our findings in the active
learning for systematic reviews community.

3 Results

3.1 Simulation Study 1

Figure3 reflects the performance results using the Loss for
every individual dataset. The difference inmean performance
is high between datasets, ranging from just marginally better
than random sampling of records to near-flawless results. The
range of performance within a single dataset changes from
one dataset to another and indicates how differently various
machine learning models perform. For some datasets, the
large range means that some models perform much better
or worse than others, while a small range suggests that all
models perform similarly.

Following this, we examine the performance of each
model and dataset in the first simulation study. The intra-
dataset variability presented in Fig. 4 showcases performance
for all simulations in study 1. Here, a large box and
whiskers indicate that the selected prior knowledge signif-
icantly impacts simulation performance, while a small range
suggests a limited impact.

While the top-performing datasets (e.g., Jall_2012,
Leenaars_2019, others) show very similar results across
most models, there is a noticeable difference in perfor-
mance between models for other datasets (e.g., Appenzeller-
Herzog_2019, Bos_2018, others). This variability is more
significant for some datasets than others. In most cases, the
performance range for a single dataset andmodel is relatively
narrow in the intra-dataset evaluation.

Figure5 presents four examples from the 325 stacked
recall curves generated in simulation study 1, along with
two recall curves from study 2. The recall curves are com-
pared to the ideal performance represented by the perfect line.
The first, Van de Schoot 2018 - Naive Bayes with TF-IDF,
demonstrates good performance. Jeyaraman 2020 - Logis-
tic Regression with TF-IDF performs moderately, with a
steep initial section but declining performance in later stages,
suggesting adifferentmodelmight be needed to optimize per-
formance. Moran 2021—Logistic Regression with TF-IDF
is an example of a dataset that is challenging to classify,
likely due to factors beyond our experimental setup. Finally,
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Fig. 3 Illustration of the variability in Loss inter-datasets. Datasets are ordered ascending based on their mean Loss values, from best to worst. The
plot aims to highlight the dispersion in model performance when applied to different datasets

Oud 2018—Random Forest with all-mpnet-base-v2 shows a
recall curve where the performance is more influenced by
the selection of prior knowledge than on average. The two
recall curves from the second simulation study include every
simulation run on a dataset in this study, combining the per-
formance across all models.

Average Pair Distance Heatmap We observe patterns in
the recall curve of the “Jeyarama_2020_-m_logistic_-e_all-
mpnet-base-v2” dataset that suggest the presence of potential
clusters. We select five records from the recall curve that
lie closely together but are distinct from the other curves,
identifying them as a potential cluster. The recall curve (1),
cluster subset (2), and corresponding APD heatmap with the
main cluster of records (3) and subcluster (4) are shown
in Fig. 6. When examining the documents from the sub-
set, we find a significant overlap between the subcluster of
identified records from the recall curve and the observed sub-
cluster in the APD heatmap. These consistent observations
across different datasets provide evidence for the existence
and influence of clustering in record discovery.

3.2 Simulation Study 2

Ranking Model Performance Figure7 presents the mean loss
for each classifier–feature extractor combination, with the
standard error represented by the black error bars. Lower loss
values indicate better model performance. From this plot, it
becomes clear some models perform better than others, but
no decisive best model can be selected.

While some models perform better on average, the best-
performing model varies significantly across datasets. As
shown in Table 4, out of the 26 available datasets, 14 dif-
ferent classifier–feature extractor combinations achieved the
lowest loss at least once. This suggests that no single model
consistently outperforms others across all datasets. The most
frequent top performer, “mxbai-embed-large-v1 transformer
with Random Forest,” was the best model in only 7 of 26
cases, while several other combinations appeared just once
or twice.

Overall Performance Figure8 illustrates the performance
of all active learning models using Work Saved over Sam-
pling. The plot shows that theWSS values generally increase
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Fig. 4 The intra-dataset variability for each model and dataset combination, represented by Loss. Ordered based on the order of Fig. 3 and mean
model loss

as the simulation progresses, demonstrating the effectiveness
of active learning in reducing the number of records that
need to be manually screened. However, the WSS values
consistently decrease toward the end as the models search
for the last-to-find relevant records. The results shown in this
figure represent the average performance across all datasets
included in the simulation. As this figure obscures specific
model performances on individual datasets, this plot is not
highly informative for detailed analysis. For a more granular
view, separate figures that display the performance of individ-

ual models are available on the interactive persistent website.
Two of such figures, namely the model performances images
for mxbai and logistic regression,8 are included in the image.

Starting Performance Figure9 shows the average number
of relevant records found after screening 100 records in the
simulation. The hue indicates the type of feature extractor

8 https://jteijema.github.io/synergy-simulations-website/models.
html#mxbai, https://jteijema.github.io/synergy-simulations-website/
models.html#logistic.
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Fig. 5 A selection of recall curves from the over 29 thousand available. In panels a through d, each line represents a single simulation using a
different record as prior knowledge. In panels e and f , each line represents a single simulation with a unique feature extractor–classifier combination
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Fig. 6 Combined representation of the Average Pair Distance (APD)
heatmap (3, 4) and recall curves for the dataset Jeyaraman 2020with the
Logistic Regression model and all-mpnet-base-v2 feature extraction.
The heatmap uses color coding to indicate pair distances, where the
pair distance is defined as the log difference in discovery time between

two records. Red signifies larger distances (greater differences in dis-
covery time), while blue represents smaller distances. Adjacent to the
heatmap, the lower right corner displays all recall curves for the dataset
(1), while the upper right corner shows a subset of recall curves corre-
sponding to a specific cluster (2)

Fig. 7 Mean loss per model with standard error
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Table 4 Summary of how often
each model was the top
performer for a dataset

Model combination Top performer count

Random Forest with mxbai-embed-large-v1 7

Random Forest with all-mpnet-base-v2 (hierarchical mean) 3

Naive Bayes with TF-IDF 2

Naive Bayes with scaled Doc2Vec 2

XGBoost with OneHot 2

Neural Network (2-layer) with all-mpnet-base-v2 (hierarchical mean) 2

Neural Network (2-layer) with mxbai-embed-large-v1 1

XGBoost with mxbai-embed-large-v1 1

XGBoost with TF-IDF 1

Naive Bayes with OneHot 1

Random Forest with scaled Doc2Vec 1

Random Forest with OneHot 1

Logistic Regression with all-mpnet-base-v2 (hierarchical mean) 1

Logistic Regression with all-mpnet-base-v2 1

Fig. 8 Plot showing the performance of all active learning models, in Work Saved over Sampling. Also showing the derivative plots only using
mxbai or logistic regression

used, in terms of calculation speed of the embedding com-
putation. Along with the graph, Table 5 shows how often
each model performs best in terms of finding the most rele-
vant records within 100 screened. As the amount of relevant
records found is less granular than theWSS score previously
used, multiple models can tie for the top performance. Out of
92 models evaluated, 44 models reached the top-performing
spot at least once. The table highlights models that achieved
this distinction more than once.

Last-to-Find Performance In Fig. 10, the performance of
eachmodel is shown usingwork saved over sampling after all

relevant records have been found (WSS@100%). The (flat)
random sampling bar represents the performance without
using active learning, therefore its work saved is 0. The speed
of the used feature extractor is again given by the hue of the
bar.

4 Discussion

This study aimed to analyze variability in simulation studies,
both across datasets and within individual datasets, as well
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Table 5 Summary of how often
each model was the top
performer for the first 100
records. Only those that
performed best more than once
are shown

Model combination 100-record top performer count

Random Forest with all-mpnet-base-v2 (hierarchical mean) 6

Random Forest with mxbai-embed-large-v1 5

Naive Bayes with OneHot 4

Support Vector Machine with OneHot 3

Naive Bayes with scaled Doc2Vec 2

Naive Bayes with TF-IDF 2

Random Forest with Doc2Vec 2

Random Forest with all-mpnet-base-v2 (head-only) 2

Logistic Regression with OneHot 2

Fig. 9 The average number of relevant records found per model in the first 100 screened records. The lower limit is 5 records (prior knowledge).
The color indicates the feature extractor embedding speed

Fig. 10 The mean WSS@100% values for each model, measured after every record has been found, ordered by work saved over the sampling. The
color indicates the computation embedding speed of the feature extractor
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as to evaluate model performance across different screening
phases. The simulation results confirm that active learning-
based systematic review screening consistently outperforms
random sample screening across all tested scenarios. Our
work builds on the groundwork of many others, such as [59,
60], by conducting large-scale simulations that systemati-
cally assess 13 commonly used classifier–feature extraction
combinations, along with 92 additional models. By incor-
porating a broader set of datasets and models than prior
studies, our results provide a more comprehensive assess-
ment of active learning in systematic review screening.

The performance differences between datasets are infor-
mative [18, 59]. Some datasets consistently yield low Loss
scores [20, 28], suggesting easier classification, while oth-
ers produce higher Loss scores with low variation between
models, indicating a more challenging task [33, 47]. The
most revealing datasets show significant differences in per-
formance between models [16, 38]. While these datasets
may provide insights into what model-specific advantages
lead to better performance, those same datasets can also lead
to bias when used exclusively for the comparison between
models. Single or low-count dataset experiments risk overly
optimistic or pessimistic outcomes due to dataset-specific
biases; for robust conclusions, models should be validated
across diverse datasets rather than limited samples.

Some datasets, such as Chou_2004 or Moran_2021, show
negligible performance improvements compared to random
screening, reflecting realistic situations where active learn-
ing may offer little benefit. However, the current study shows
that even the weakest models generally detect enough of a
pattern to slightly outperform random sampling. If no classi-
fier, regardless of its complexity, manages to identify such a
pattern in a given dataset, it strongly suggests that the dataset
itself lacks any exploitable signal.

The influence of specific dataset characteristics, such as
size or topic, remains unclear. No significant correlation was
found between identifiable dataset features and model pref-
erence. With a larger number of datasets, stronger statistical
power might reveal such correlations if they exist, but 26
is insufficient to draw conclusions. This result also suggests
that commonly used dataset descriptors may not capture the
factors influencing model effectiveness.

The study investigated whether an optimal model consis-
tently outperforms others across systematic review datasets.
Results indicate that some models significantly outperform
others, including:

• Random Forest with mxbai-embed-large-v1
• Random Forest with all-mpnet-base-v2 (hierarchical
mean)

• Naïve Bayes with TF-IDF
• Naïve Bayes with scaled Doc2Vec
• XGBoost with OneHot encoding

• Neural Network (2-layer) with all-mpnet-base-v2 (hier-
archical mean)

No model achieved superior performance across all
datasets. The model with the lowest average loss was still
outperformed in 19 out of 26 datasets. These findings confirm
that no classifier–feature combination is universally optimal.
Instead, the optimal model varies depending on the spe-
cific dataset, highlighting the need for a flexible, adaptable
approach when creating active learning software.

For general performance, both simple and complex mod-
els rank among the top performers, indicating that either type
can excel depending on the dataset. For starting performance,
the best models identified on average 27 out of a theoret-
ical maximum of 51 relevant records, within the first 100
records screened. Compared to general performance, sim-
plermodels tend to rank higher in starting performance.More
complex models, which rely on a larger number of param-
eters and features, typically require more data to generate
effective screening orders [54]. Since starting performance
is evaluated with limited data, simpler models tend to per-
form relatively better. However, some complex models also
perform well, particularly those using pretrained feature
extractors. Models like hm-bert and mxbai are pretrained,
while others, likeWord2Vec andDoc2Vec, are trained during
simulation. Because the pretrainedmodels have already been
exposed to large amounts of data, the general rule that com-
plex models require more data remains valid; these models
have simply already encountered more data.

For last-to-find records [7, 19, 22], advanced models sig-
nificantly outperform simpler models due to their ability to
detect contextual and semantic relationships. Additionally,
the “last few difficult documents” phenomenon is consis-
tently observed across datasets. While the trends in starting
and last-to-find performance align with expectations, it is
valuable that our findings confirm them empirically.

Despite the widespread use of Support Vector Machines
(SVMs) in active learning [2, 8, 42, 67], our results suggest
that SVM can underperform compared to several other clas-
sifiers. This raises the question of whether its common use
is justified or whether alternative classifiers should be con-
sidered more frequently. However, since SVM has shown
strong results in prior studies further research should inves-
tigate whether better hyperparameter tuning or architectural
adjustments could improve its performance.

The Normalized Recall Regret metric provides a broader
assessment of active learning performance than point-based
metrics like Work Saved over Sampling (WSS@X%, [11]).
While WSS@X% is widely used, there is no unified met-
ric for evaluating systematic review screening models [39].
Unlike WSS@X%, which evaluates performance at a fixed
recall level, our metric captures the overall effectiveness of
a model across the entire screening process. This makes it
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useful for both general model evaluation and optimization.
By treating regret as a Loss function, model performance can
be compared more directly across datasets, supporting better
model selection and pipeline optimization.

Recall graphs illustrate active learning performance but
do not capture clustering dynamics. The current study intro-
duces a newvisualizationmethod that reveals how records are
discovered over time, providing deeper insight into dataset
structure. Certain recall curves display distinct shapes. Visu-
alizing the average discovery sequences in APD heatmaps
highlights underlying clusters. The observed recall curve
shapes correlated with these identified clusters. This indi-
cates both the existence of clusters and the validity of the
assumption that these can be identified by the shape of the
recall curve.

The current study has limitations. While many model set-
tings were explored, not all possible configurations were
covered. Other variables such as different samplers and bal-
ancers were left unexplored. This study considers a model to
be a combination of a feature extractor and a classifier, rather
than each component separately. The interplay between the
feature extractor and classifier within a model can influence
overall performance for better or worse, and some combina-
tions were not compatible. This analysis focuses exclusively
on the results for each complete model combination to avoid
the complexities and data incompleteness of dissecting the
contributions of feature extractors and classifiers indepen-
dently.

Another important aspect not covered is hyperparameter
optimization. Many classifiers have tunable parameters that
can significantly impact performance, and future research
should explore whether certain models could achieve even
better results with fine-tuned parameters.

Future studies should focus on identifying and analyzing
more dataset characteristics, as this might lead to a better
understanding of the relationship with model performance.
Advanced feature extraction techniques that capture more
complex lexical categories, alongside topic expert-driven
dataset analysis, couldhelp uncover underlyingpatterns. This
might improve performance predictions and lead to more
informed model selection strategies.

There is a need to enhance the performance of underper-
forming datasets, as they offer the most room for improve-
ment. An open question is whether or not these datasets are
performing as well as possible, or if yet undiscovered pat-
terns exist that could further improve classification outcomes.
Regardless of whether improvement is possible, stabilizing
their performance across multiple simulations and reducing
variability is crucial to ensure consistent and reliable results.
Researchers should also consider contributing new screening
data to the SYNERGY dataset to make it even more relevant
and broad-based.

A promising direction is to treat the time-to-discovery of
records as time-to-event data. This would open up survival
analysis, a well-established branch of statistics, for use in
our framework. Applying preexisting tools like the Kaplan–
Meier estimator and accounting for censored data (where
some records remain undiscovered) would allow for deeper
statistical analyses to compare discovery rates across models
and datasets, uncovering factors that influence efficiency.

In the evolution of systematic review automation, Large
Language Models (LLMs) present a promising candidate
for enhancing classification tasks. Given their capabilities
in natural language understanding, LLMs have the poten-
tial to (semi-)automate the classification process. A hybrid
approach, combining active learning strategies with LLM-
driven classification, could offer a balanced solution. In the
current active learning pipeline, some dataset segments go
unscreened when the dataset appears sufficiently sparse, and
the stopping rule is reached [6]. LLMs could address this
gap by automatically screening these overlooked portions,
while human experts focus on a subset of ambiguous or
high-importance cases. This would facilitate a more efficient
and reliable review process, enabling researchers to better
manage large volumes of data. The integration of LLMs
into the classification pipeline could therefore contribute
significantly to the stability and accuracy of classification,
warranting its exploration in future studies.

4.1 Recommendations

Our recommendations for end-users assume the use of an
“average” dataset. Evaluating the unique characteristics of
the datasets so they may lead to more tailored model rec-
ommendations falls beyond the scope of this study. We
provide general guidance to support researchers in applying
our approach to systematic reviews across various domains.

When screening in a limited time or for a limited num-
ber of records (in our experiments, 100 records or one hour
of screening time), we recommend using a combination of
either Naive Bayes or Logistic Regression with TF-IDF. This
recommendation is based on the results shown in Table 2,
Table 5 and Fig. 9. Although not the best performer, these
models rank a very close third and fourth out of 92 mod-
els. The reason for this recommendation over the number
one and two models is that these models are computationally
lightweight. When computational time is a limiting factor,
the time saved by using a faster model allows for screen-
ing more documents, leading to more data which leads to
a larger performance boost than using a slower transformer
to embed the dataset, given the similar performance levels.
Another point to consider is the explainability factor. Even
when computational time is not a concern, these less com-
plex models offer a significantly more interpretable process
compared to transformer models.
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For the last-to-find records, screening often involves
reviewing a larger number of documents. In such cases, more
complex models tend to be more time-efficient. Notably,
Random Forest with the mxbai-embed-large-v1 embedding
consistently performs significantly in identifying these dif-
ficult records, making it the recommended option. This
recommendation also applies to switchingmodels. If amodel
change is planned during the review process, this model is
the preferred choice.

Finally, we recommend that platforms facilitating active
learning remain open to the implementation of new machine
learning algorithms as open-source projects. This study
demonstrates that new approaches can improve performance.
Given the rapid pace of these developments, the open exten-
sibility of software supporting active learning is the most
obvious and sustainable option.

4.1.1 User considerations

Users should consider the following when selecting their
approach in performing a systematic review supported by
active learning:

1. Available time: If time is limited and the focus is on
screening efficiently, lightweight models such as Naive
Bayes or Logistic Regression with TF-IDF are ideal.
These models save computational time, enabling more
documents to be screened in less time, without a signifi-
cant drop in performance.

2. Scope of the search: If time is not a constraint and the
goal is to either increase the scope of the search (e.g.,
retrieve more data from the database) or ensure high
recall (e.g., increase the emphasis on finding all poten-
tially relevant records), then complex models such as
Random Forest with mxbai-embed-large-v1 are recom-
mended. This is especially suitable for users willing to
invest more time in achieving exhaustive results.

3. Optimal workflow: To balance efficiency and thorough-
ness, users should follow the SAFE procedure [4]. This
work provides aworkflow that ensures an evidence-based
strategy for determining when to stop screening and
switch between models if needed. The selected models
for this procedure are those recommended in the previous
section.

4.2 Conclusion

Empirical evidence is the foundation of any scientific dis-
cipline, especially in data science and machine learning. In
a rapidly progressing field like active learning for system-
atic reviews, which is fundamentally empirical, it is crucial
to base the adoption of new methodologies on robust, large-
scale evidence.

This large-scale simulation study evaluated active learning
strategies for systematic reviews, testing whether an opti-
mal model consistently outperforms others across multiple
datasets. No suchmodel was found. Instead, differentmodels
performed best at different stages of the review process and
across different datasets.

These results highlight the importance of large-scale
empirical evidence in systematic review simulations and set
a higher standard for future research in this field.
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