Software Impacts 21 (2024) 100663

journal homepage: www.journals.elsevier.com/software-impacts

Contents lists available at ScienceDirect

Software Impacts

Original software publication

Makita—A workflow generator for large-scale and reproducible simulation M)

studies mimicking text labeling @

Check for
updates

Jelle Jasper Teijema ®*, Rens van de Schoot?, Gerbrich Ferdinands ?, Peter Lombaers ?,

Jonathan de Bruin?

2 Department of Methodology and Statistics, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, The Netherlands
b Department of Research and Data Management Services, Information Technology Services, Utrecht University, Utrecht, The Netherlands

ARTICLE INFO ABSTRACT

Keywords:

Systematic reviews
Machine learning
Simulation study
Reproducibility
Workflow automation

This paper introduces ASReview Makita, a tool designed to enhance the efficiency and reproducibility of
simulation studies in systematic reviews. Makita streamlines the setup of large-scale simulation studies by
automating workflow generation, repository preparation, and script execution. It employs Jinja and Python
templates to create a structured, reproducible environment, aiding both novice and expert researchers. Makita’s
flexibility allows for customization to specific research needs, ensuring a repeatable research process. This tool

represents an advancement in the field of systematic review automation, offering a practical solution to the
challenges of managing complex simulation studies.

Code metadata

Current code version

Permanent link to code/repository used for this code version
Permanent link to reproducible capsule

Legal code license

Code versioning system used

Software code languages, tools and services used

Compilation requirements, operating environments and dependencies

If available, link to developer documentation/manual
Support email for questions

V0.9.0
https://github.com/Softwarelmpacts/SIMPAC-2023-492
https://codeocean.com/capsule/5417339/tree/v2

MIT License

git

Python, Jinja

Programming Language :: Python :: 3.7

Programming Language :: Python :: 3.8

Programming Language :: Python :: 3.9

Programming Language :: Python :: 3.10
Programming Language :: Python :: 3.11
ASReview

jinja2

cfgtemplater

https://github.com/asreview/asreview-makita/blob/main/README.md
asreview@uu.nl

1. Summary

The field of accelerating the screening phase of systematic reviews
with advanced machine learning methods is rapidly evolving [1]. A
simulation study involves mimicking the screening process for a system-
atic review of a human in interaction with an Active learning model.
The simulation reenacts the screening process as if a researcher were

using a machine learning model to prioritize the order of papers being
screened. The performance of one or multiple model(s) can then be
measured by performance metrics, such as the Work Saved over Sam-
pling, recall at a given point in the screening process, or the average
time to discover a relevant record. However, setting up a simulation
study can be a time-consuming and error-prone process, especially since
reproducibility is of key importance.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.

* Corresponding author.
E-mail address: j.j.teijema@uu.nl (J.J. Teijema).

https://doi.org/10.1016/j.simpa.2024.100663

Received 30 November 2023; Received in revised form 6 May 2024; Accepted 8 May 2024

2665-9638/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2024.100663
https://www.journals.elsevier.com/software-impacts
https://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2024.100663&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2023-492
https://codeocean.com/capsule/5417339/tree/v2
https://github.com/asreview/asreview-makita/blob/main/README.md
mailto:asreview@uu.nl
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:j.j.teijema@uu.nl
https://doi.org/10.1016/j.simpa.2024.100663
http://creativecommons.org/licenses/by/4.0/

J.J. Teijema, R. van de Schoot, G. Ferdinands et al.

Makita Scope

Pending Simulation Study

}
ASReview's Makita ‘
(MAKe IT Automatic) ‘

\

Dataset(s) }
Jobs File ‘
Support Script(s) ‘
|

Documentation
Folder Structure

Software Impacts 21 (2024) 100663

Completed Simulation Study
Simulation Output

Dataset(s)
Jobs File

Simulation

Execution software
(Python,- ASReview,
shell scripts)

Support Script(s)

Documentation

Folder Structure

Fig. 1. Diagram illustrating the general workflow of Makita. The “Makita Scope” section defines the specific functionalities covered in this paper.

This paper presents ASReview’s Makita (MAKe IT Automatic)
[2]. Makita is the precursor to a reproducible simulation study. It
streamlines the simulation study design process for systematic reviews
using ASReview [3], providing a generative framework to simplify
creating and running large-scale simulations. Using Makita templates,
different study workflows can be generated to fit the study needs. If
a study requires a unique template, a custom template can be used.
Its implementation through the command-line interface aims to make
reproducible and repeatable research easy and efficient, to assist both
novice and expert researchers.

2. Statement of need

Although tools such as ASReview LAB [4] offer various ways to sim-
ulate the screening process in systematic reviews via its user interface,
there is a need for automation in setting up the research environ-
ment for large-scale simulation research. Setting up the structure of
a simulation study manually is prone to mistakes and a tedious task,
especially when the scale of the simulation increases. ASReview Makita
fills this gap by automating the workflow setup, preparing GitHub
repositories, documentation, pre/post-processing code, and generating
execution scripts.

Simplifying reproducibility and maintaining an organized folder
structure are key elements in scientific research. They ensure that ex-
periments can be reliably repeated and built upon by other researchers.
A well-organized directory makes it easier to understand the workflow
and locate files, and contributes to the transparency and credibility of
the study [5].

3. Technical functionality

Using a combination of Jinja-based templates and Python templates,
ASReview Makita automatically generates a hierarchical folder struc-
ture, a README.md (including descriptions, instructions, file tree, and
data statements), any additional code used for pre-and post-processing,
and a batch or shell execution script. Makita offers code for, among oth-
ers, extracting dataset statistics [6], extracting simulation performance
metrics such as Time to Discovery [7], merging those metrics into easy-
to-read tables, generating word clouds [8], and plotting the results [9].
Makita assures that all steps of the simulation study are stored and thus
reproducible and transparent.

The Jinja-based templates handle study structure while accompany-
ing Python templates add extended functionality. A range of standard
templates is available, specifically tailored for ASReview simulations.
Overall, the architecture provides a modular and flexible framework,
allowing users to easily adapt the tool to their specific research needs.
What Makita does:

- Set up a workflow for running a large-scale simulation study

- Prepare a GitHub repository, including a readme file

- Automate the many lines of code needed

- Create an execution script for running the simulation study

- Make research fully reproducible

- Support custom templates for unique research questions
What Makita does not do:

- Execute jobs or tasks itself

- Write the study

While Makita was originally developed for use with ASReview’s
simulation CLI, Makita’s design allows it to be integrated with any other
CLI tool via a customized template, broadening its applicability across
different large-scale research environments. Makita can be used locally,
on a server, or can be used in combination with Docker and Kubernetes.

Very-large-scale simulation studies have been successfully run using
Makita, with over 29.000 simulations in a single study, using 25 differ-
ent datasets and 92 different simulation models (Teijema, J. J., [10]).
The study implemented Makita within a Kubernetes cluster, generating
custom templates on the fly for each of the cluster nodes’ specific needs
[11].

4. Software scope

The software discussed in this paper focuses on the elements in
the section ‘Makita Scope’ of Fig. 1. For starting the creation of a
simulation study, three elements are necessary: (1) one or more datasets
that provide the input data, (2) user-defined commands that specify
operational settings, and (3) a choice between using a default template
or a custom template provided by the user. These elements are part of
the ‘User Input’ section.

The following section is the ‘Pending Simulation Study’ section,
which sets up but does not start the simulations. It organizes datasets,
the jobs file, support scripts, documentation, and folder structure,
preparing everything needed for the simulation study.

The ‘Completed Simulation Study’ section deals with the results
after the simulations have run via execution of the jobs file. It includes
output (such as, but not limited to: simulation files, plots, metric
files, and updated documentation), input datasets, used code scripts
for processing results, and documentation. Ideally, additional details
should be added to the documentation to explain the goal of the study,
results, and methods used, for future reference and reproducibility.

5. Software architecture

Makita starts with the MakitaEntryPoint, which handles the
execution of user commands via the argparse library. The entry point
defines several commands, with the primary ones being template setup
and script addition (see Fig. 2).

For template configuration, the user specifies various operational
parameters, such as the template name, job file type, dataset and out-
put locations, initialization seeds, model configurations, and more, which
allows for precise control over the simulation settings. The command
setup supports dynamic handling of template parameters, allowing both
default and user-provided templates. The template system uses Python’s
entry point mechanism to load templates, ensuring modularity and
extensibility.

J.J. Teijema, R. van de Schoot, G. Ferdinands et al.

Software Impacts 21 (2024) 100663

User
User
Folder(s
Command(s) Manual input Command(s) femplate ortemplate Cref;thdoutput (s)
add-script 1 strtctirre
-scri Collect
File Path(s) add-script Python L. .
Template itamplite < Pe
Choice arguments
D —
Dataset(s) Template Arguments
—
Script Generate Pythlon o
Choice . YAML Template ython
Y?ZAHI; Slg‘lept Dataset(s) = template - Class ~ 7| [TemplateBase|
P parameters (Basic, ARFI, Class
MultiModel) =
: Template Parameters YAML
——4 Template
I *(_ (Basic, ARFI,
| MultiModel)
o Renc!er script t:r?wr;)clj:{e - _ Template e
file(s) file(s)
Custom) 4
Template Rendered String(s) Custom
| (pp—— Template
(~template
i filepath)
File handler File(s)
\ creates file(s) .
from supplied
string(s)

Fig. 2. Diagram illustrating the sequence of operations of Makita. Key processes include the selection of input datasets, choice of templates, collection of template arguments, and
rendering of files from templates. Makita supports custom study design through user-defined templates and adapts the jobs file to the user’s operating system. The final outputs

are organized into a structured folder system as specified by the generated jobs file.

After the rendering of both scripts and documentation, files are L— output/
centrally handled by the FileHandler class, which executes file F— figures/
. h ddi s d . files f | I— plot_recall_sim_generic_labels.png
operations such as adding, overwriting, and generating files from tem- — wordcloud generic_labels.png
plates using the Jinja2 templating engine. The architecture is designed }— wordcloud_irrelevant_generic_labels.png
to be adaptive to different operating systems, providing tailored job file '— wordcloud_relevant_generic_labels.png
. b for Wind d .sh for Unix-lik — simulation/
generation (e.g., .bat for Windows and .sh for Unix-like systems) across | L generic_labels/
platforms. | [— descriptives/
| L— data_stats_generic_labels.json
I— metrics/
6 Usage | I— metrics_sim_generic_labels_©.json
| — metrics_sim_generic_labels_99.json
asreview makita template basic _n_runs 100 state_files/ . .
|— sim_generic_labels_0.asreview
: ¢) : : L sim generic_labels_99.asreview
Upon creating a ‘data’ folder with the desired datasets, the study L tables/ - - =
ables

structure is generated by running the Makita command for the ‘basic’
template. The Makita command can be customized with various flags to
specify the study design. In this example, the ‘n_runs’ flag is set to 100,
indicating that 100 simulations are needed for the study. Executing the
generated jobs file starts the simulations, producing simulation output,
logs, and metrics. Fig. 3 shows the file tree results for running the
basic template, and Fig. 4 after execution of the jobs file. File trees are
generated with scientific ordering, following Scitree [12].

Makita_basic/

README . md

jobs.bat

data/

L generic_labels.csv

scripts/
get_plot.py
merge_descriptives.py
merge_metrics.py
merge_tds.py

Fig. 3. File tree structure generated by Makita for the ‘basic’template, before execution
of the jobs file. This structure is organized with scientific ordering.

I— metrics_sim_all.csv
I— metrics_sim_all.xlsx
}— data_descriptives_all.csv
|— data_descriptives_all.xlsx
I— metrics/
| }— metrics_sim_generic_labels.csv
| L metrics_sim_generic_labels.x1lsx
L— time_to_discovery/

}— tds_sim_generic_labels.csv

L tds_sim_generic_labels.x1lsx

Fig. 4. File tree structure generated by Makita for the ‘basic’ template, after execution
of the jobs file. This structure is organized with scientific ordering.

7. Impact overview

Enhanced Accessibility and Efficiency in Research: ASReview
Makita significantly reduces the time and complexity involved in
setting up simulation studies. Its ability to swiftly create reproducible
workflows allows researchers, especially those new to the field, to
initiate and evaluate their simulation studies in mere minutes. This
accelerated process not only saves time but also encourages a broader

J.J. Teijema, R. van de Schoot, G. Ferdinands et al.

exploration of research questions, expanding the horizons of systematic
review research.

Reproducibility and Reliability: The software’s emphasis on repro-
ducibility is a key element for improving the quality of research. By
ensuring that each step of the simulation study is meticulously recorded
and can be replicated, Makita enhances the reliability and credibility of
research findings. On top of recording every step in Makita’s process, it
writes basic documentation for later reference. This documentation is
crucial in a field where the accuracy and consistency of data process-
ing directly influence the outcomes and interpretations of systematic
reviews.

Ongoing Research and Contributions: The impact of Makita is ev-
idenced by its usage in multiple research projects, both many un-
published exploratory studies and published works [13-17]. Makita is
used in both government and commercial organizations, its open-source
nature allowing for easy adaptation in any setting. These organizations
include, but are not limited to, the PBL Netherlands Environmental
Assessment Agency, the Dutch National Institute for Public Health and
the Environment, and private institutions. Its usage in these projects
highlights its utility and relevance in modern research settings.

CRediT authorship contribution statement

Jelle Jasper Teijema: Conceptualization, Data curation, Formal
analysis, Investigation, Methodology, Software, Visualization, Writing
- original draft, Writing — review & editing, Validation. Rens van
de Schoot: Conceptualization, Funding acquisition, Project administra-
tion, Supervision, Validation, Writing — review & editing. Gerbrich Fer-
dinands: Conceptualization, Software, Writing — review & editing. Pe-
ter Lombaers: Conceptualization, Software, Visualization. Jonathan
de Bruin: Conceptualization, Data curation, Methodology, Software,
Supervision, Validation, Visualization, Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] J.J. Teijema, S. Seuren, D. Anadria, A. Bagheri, R. van de Schoot, Simula-
tion based active learning for systematic reviews: A systematic review of the
literature, 2023, http://dx.doi.org/10.31234/0sf.io/67zmt, PsyArXiv.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Software Impacts 21 (2024) 100663

ASReview-LAB-developers, ASReview makita: A workflow generator for simula-
tion studies using the command line interface of ASReview LAB, 2023, http:
//dx.doi.org/10.5281/zenodo.11103503.

R. Van De Schoot, J. De Bruin, R. Schram, P. Zahedi, J. De Boer, F. Weijdema, B.
Kramer, M. Huijts, M. Hoogerwerf, G. Ferdinands, et al., An open source machine
learning framework for efficient and transparent systematic reviews, Nat. Mach.
Intell. 3 (2) (2021) 125-133, http://dx.doi.org/10.1038/542256-020-00287-7.
ASReview-LAB-developers, ASReview LAB - A Tool for Al-Assisted Systematic
Reviews, Zenodo, 2019, http://dx.doi.org/10.5281/zenodo.3345592.

P. Lombaers, J. de Bruin, R. van de Schoot, Reproducibility and data storage
for active learning-aided systematic reviews, Appl. Sci. 14 (9) (2024) 3842,
http://dx.doi.org/10.3390/app14093842.
ASReview-LAB-developers, ASReview datatools,
5281/zenodo.7333281.

G. Ferdinands, R. Schram, J. de Bruin, A. Bagheri, D.L. Oberski, L. Tummers, J.J.
Teijema, R. van de Schoot, Performance of active learning models for screening
prioritization in systematic reviews: A simulation study into the average time
to discover relevant records, Syst. Rev. 12 (1) (2023) 100, http://dx.doi.org/10.
1186/513643-023-02257-7.

ASReview-LAB-developers, ASReview wordcloud: A tool to create a visual
impression of the verbal content within a systematic review dataset, 2022,
http://dx.doi.org/10.5281/zenodo.6625855.

ASReview-LAB-developers, ASReview insights, 2022, http://dx.doi.org/10.5281/
zenodo.7418934.

J.J. Teijema, J. de Bruin, A. Bagheri, R. van de Schoot, Large-scale simulation
study of active learning models for systematic reviews, 2023, http://dx.doi.org/
10.31234/0sf.io/2w3rm.

J.J. Teijema, Jteijema/asreview-simulation-project, 2023, http://dx.doi.org/10.
5281/zenodo.7991081.

J. De Bruin, Scitree - like tree, but optimized for science, 2023, http://dx.doi.
org/10.5281/zenodo.7500084.

D.G. Campos, T. Fiitterer, T. Gfrorer, R.E. Lavelle-Hill, K. Murayama, L. Konig,
M. Hecht, S. Zitzmann, R. Scherer, Screening smarter, not harder: A comparative
analysis of machine learning screening algorithms and heuristic stopping criteria
for systematic reviews in educational research, 2023, http://dx.doi.org/10.
31234/osf.io/fpwc2.

R.C. Neeleman, C. Leenaars, M. Oud, F. Weijdema, R. van de Schoot, Addressing
the challenges of reconstructing systematic reviews datasets, 2023, http://dx.doi.
org/10.31234/0sf.io/jfcbq.

M. Oude Wolcherink, X. Pouwels, S. van Dijk, C. Doggen, H. Koffijberg, Can
artificial intelligence separate the wheat from the chaff in systematic reviews
of health economic articles? Expert Rev. Pharm. Outcomes Res. (2023) 1-8,
http://dx.doi.org/10.1080/14737167.2023.2234639.

J.J. Teijema, L. Hofstee, M. Brouwer, J. de Bruin, G. Ferdinands, J. de Boer, P.
Vizan, S. van den Brand, C. Bockting, R. van de Schoot, et al., Active learning-
based systematic reviewing using switching classification models: The case of the
onset, maintenance, and relapse of depressive disorders, Front. Res. Metr. Anal.
8 (2023) 1178181, http://dx.doi.org/10.3389/frma.2023.1178181.

S. Romanov, A.S. Siqueira, J. de Bruin, J. Teijema, L. Hofstee, R. van de Schoot,
Optimizing ASReview simulations: A generic multiprocessing solution for ‘light-
data’ and ‘heavy-data’ users, Data Intell. (2024) 1-19, http://dx.doi.org/10.1162/
dint_a_00244.

2022, http://dx.doi.org/10.

http://dx.doi.org/10.31234/osf.io/67zmt
http://dx.doi.org/10.5281/zenodo.11103503
http://dx.doi.org/10.5281/zenodo.11103503
http://dx.doi.org/10.5281/zenodo.11103503
http://dx.doi.org/10.1038/s42256-020-00287-7
http://dx.doi.org/10.5281/zenodo.3345592
http://dx.doi.org/10.3390/app14093842
http://dx.doi.org/10.5281/zenodo.7333281
http://dx.doi.org/10.5281/zenodo.7333281
http://dx.doi.org/10.5281/zenodo.7333281
http://dx.doi.org/10.1186/s13643-023-02257-7
http://dx.doi.org/10.1186/s13643-023-02257-7
http://dx.doi.org/10.1186/s13643-023-02257-7
http://dx.doi.org/10.5281/zenodo.6625855
http://dx.doi.org/10.5281/zenodo.7418934
http://dx.doi.org/10.5281/zenodo.7418934
http://dx.doi.org/10.5281/zenodo.7418934
http://dx.doi.org/10.31234/osf.io/2w3rm
http://dx.doi.org/10.31234/osf.io/2w3rm
http://dx.doi.org/10.31234/osf.io/2w3rm
http://dx.doi.org/10.5281/zenodo.7991081
http://dx.doi.org/10.5281/zenodo.7991081
http://dx.doi.org/10.5281/zenodo.7991081
http://dx.doi.org/10.5281/zenodo.7500084
http://dx.doi.org/10.5281/zenodo.7500084
http://dx.doi.org/10.5281/zenodo.7500084
http://dx.doi.org/10.31234/osf.io/fpwc2
http://dx.doi.org/10.31234/osf.io/fpwc2
http://dx.doi.org/10.31234/osf.io/fpwc2
http://dx.doi.org/10.31234/osf.io/jfcbq
http://dx.doi.org/10.31234/osf.io/jfcbq
http://dx.doi.org/10.31234/osf.io/jfcbq
http://dx.doi.org/10.1080/14737167.2023.2234639
http://dx.doi.org/10.3389/frma.2023.1178181
http://dx.doi.org/10.1162/dint_a_00244
http://dx.doi.org/10.1162/dint_a_00244
http://dx.doi.org/10.1162/dint_a_00244

	Makita—A workflow generator for large-scale and reproducible simulation studies mimicking text labeling
	Summary
	Statement of Need
	Technical Functionality
	Software Scope
	Software Architecture
	Usage
	Impact Overview
	CRediT authorship contribution statement
	Declaration of competing interest
	References

