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ABSTRACT

Recurrent Neural Networks (RNNs) are extensively employed for processing sequential data such as time series. Reservoir computing (RC)
has drawn attention as an RNN framework due to its fixed network that does not require training, making it an attractive platform for
hardware-based machine learning. We establish an explicit correspondence between the well-established mathematical RC implementations
of echo state networks and band-pass networks with leaky integrator nodes on the one hand and a physical circuit containing iontronic
simple volatile memristors on the other. These aqueous iontronic devices employ ion transport through water as signal carriers and feature
a voltage-dependent (memory) conductance. The activation function and the dynamics of the leaky integrator nodes naturally materialize
as the (dynamic) conductance properties of iontronic memristors, while a simple fixed local current-to-voltage update rule at the memristor
terminals facilitates the relevant matrix coupling between nodes. We process various time series, including pressure data from simulated
airways during breathing that can be directly fed into the network due to the intrinsic responsiveness of iontronic devices to applied pressures.
We accomplish this by employing established physical equations of motion of iontronic memristors for the internal dynamics of the circuit.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0273574

Reservoir computing (RC) is a proven method for processing tem-
poral data and has drawn more recent attention as a suitable
framework for hardware-based machine learning. Echo state and
band-pass networks are extensively studied implementations of
RC. We propose a novel physical circuit design, based on flu-
idic iontronic memristors, that provides a one-to-one correspon-
dence with the mathematical descriptions of these RC paradigms.
Using the underlying equations of motion of these fluidic devices,
we process several time series, including simulated respiratory
pressure waveforms, exploiting iontronics’ intrinsic sensitivity
to applied pressures. Our direct physical (iontronic) realiza-
tion of these established RC implementations offers a blueprint
for physically embedded temporal processing with an emerging
substrate.

I. INTRODUCTION

Reservoir computing (RC) has gained significant attention as a
recurrent neural network paradigm for processing temporal data.1

RC employs a fixed high-dimensional reservoir (i.e., a dynamical
system with many internal states) whose dynamics are driven by
input signals, with the benefit that only a simple readout function
requires training for classification tasks. Although the rise of com-
putational capacity for training in the past few years has somewhat
mitigated this benefit, new attention has recently been drawn to RC
for hardware-based implementations as the fixed nature of the reser-
voir circumvents complicated internal tuning of the RC circuit.2

Recent research, for instance, has explored the use of physical
systems such as electronic, electrochemical, optical, and mechan-
ical devices.2,3 However, although the use of physical substrates is
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informed by the established mathematical frameworks for software
RC, establishing a deeper physical equivalence is challenging.

In this work, we establish an explicit one-to-one correspon-
dence between the physical equations of iontronic memristors
placed within a peripheral circuit on the one hand and the governing
equations of echo state networks (ESNs) and band-pass networks
(BPNs) with leaky integrator nodes (LI-ESNs and LI-BPNs, respec-
tively) on the other. Iontronics exploit aqueous ionic and molecular
transport, akin to the brain’s medium, and can, therefore, pro-
vide striking similarities with the brain in neuromorphic comput-
ing implementations,4–11 including RC.12,13 Additionally, the easily
tunable memory timescales of iontronic platforms12,14–17 naturally
match the relatively slow timescales found in natural or biological
signals, something that is challenging within conventional fast solid-
state devices.18 Moreover, we show how the pressure-dependence of
these fluidic systems enables direct conversion of a biological pres-
sure signal to circuit input without any intervention or interaction
required from outside the network.

In this work, we (i) propose a circuit based on the emerging
“leaky” substrate of aqueous iontronics that would be capable
of advanced RC applications, (ii) propose a one-to-one cor-
respondence between this physical (iontronic) circuit and the
well-established mathematical LI-ESN and LI-BPN descriptions,
(iii) leverage the unique property of slow easily tunable memory
timescales of iontronic memristors, and (iv) exploit the intrinsic
pressure responsiveness of iontronics to directly convert pressure
signal inputs on-chip. Due to the equivalence between our pro-
posed physical device and the abstract mathematical framework,
the (extensive) theoretical results previously derived for ESNs and
BPNs19–27 can be directly translated to the proposed physical circuit,
without requiring us to reinvent the wheel for RC on a physical sub-
strate. All code used for our results is available online at Ref. 28.
Our results not only advance the theoretical understanding of RC in
physical systems but also provide a pathway for the development of
new (iontronic) hardware-based RC implementations.

II. ECHO STATE AND BAND-PASS NETWORKS

We consider LI-ESNs that converts a K-dimensional input u(t)
with N reservoir neurons at state x(t) to an L-dimensional out-
put y(t) at time t, here without output feedback and without direct
input-to-output coupling. Such an LI-ESN is governed by19

ẋ =
1

c

(

−ax + f
(

Winu + Wx
))

, (2.1)

y = Woutx. (2.2)

Here, c ∈ R is a global relaxation time parameter, a ∈ R is the leak-
ing rate, u = u(t) ∈ R

K is the input, x = x(t) ∈ R
N is the state of the

reservoir neurons, f : R → R is a sigmoidal activation function that
is applied element-wise to its input, and y = y(t) ∈ R

L is the out-
put vector. Here, we will set f(x) = tanh(x), a standard choice,19 and
g will be the identity function such that y = Woutx. The input and
reservoir states are coupled through the input matrix Win ∈ R

N×K,
the internal matrix W ∈ R

N×N, and the output matrix Wout ∈ R
L×N.

Notably, only Wout needs to be found through training, which we

here perform via ridge regression,29 with the other matrices being
initialized randomly.

In its most general form, there is also an output-feedback
term Wfby in the argument of f, which is not of relevance for
the input processing we focus on here.19 Additionally, the out-
put can be transformed by a function g : R → R that is applied
element-wise to Woutx such that y = g

(

Woutx
)

. Lastly, in general,
one can also directly couple the input to the output according to
y = g

(

Wout[x; u]
)

with [; ] denoting vector concatenation (in this
case, Wout ∈ R

L×(K+N)). These last two generalizations are omitted
here to simplify the physical circuit realization.

The physical circuit we will introduce in Sec. III A is in princi-
ple described by continuous equations as Eq. (2.1). However, inputs
u are often discrete-time sampled. Additionally, here we simulate
the circuit using physical equations of the internally used iontronic
memristors, but this will also require discretization of the underly-
ing equations. Using Euler discretization with (time) stepsize δ and
t = nδ with n ∈ N, we see that Eq. (2.1) for n ≥ 0 becomes19

x(n + 1) =

(

1 −
aδ

c

)

x(n)+
δ

c
f
(

Winu(nδ)+ Wx(n)
)

.

A. Echo state property

A key stability property of ESNs is the echo state property (ESP),
which is defined by19

Definition 1. An ESN with reservoir states x(n) has the echo
state property if for any compact C ⊂ R

K and any two starting states
x(0) and x′(0), there exists a sequence (δh)h=0,1,2,... that converges to
0 such that for any input sequence (u(n))n=0,1,2,... ⊆ C it holds that
‖x(h)− x′(h)‖ ≤ δh.

Heuristically, Definition 1 tells us that an ESN with the ESP
“forgets” its initial state at a rate independent from the input
sequence or the precise initial state.

There are various constraints that guarantee the echo state
property in leaky integrator ESNs.19,22 The condition we will use here
is that the spectral radius ρ(M) of M = (δ/c) |W| + (1 − aδ/c)I sat-
isfies ρ(M) < 1. A simple algorithm for constructing an internal
weight matrix that guarantees the echo state property is given by22

1. Generate a random matrix W with only non-negative elements
wij ≥ 0.

2. Rescale W such that the spectral radius ρ (M) of the matrix
M = (δ/c)W + (1 − aδ/c)I satisfies ρ (M) < 1.

3. Change the sign of a desired number of elements wij.

Internal weight matrices W with spectral radii smaller than 1 often
also display the ESP, but this is not a guarantee.22 Alternatively,
one could generate a random W and then check if ρ(M) < 1 after-
ward. The available code28 provides aforementioned algorithm as an
optional setting to guarantee the ESP. Lastly, a δ

c
≤ 1 is a natural

constraint.

B. Band-pass network

A LI-BPN is similar to a LI-ESN as in Eqs. (2.1) and (2.2), with
one key difference. Each node can individually be designed to be
sensitive to certain frequencies, which we implement here by provid-
ing each node with its own characteristic relaxation timescale ci,27,30
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as opposed to a single global timescale c for the entire network. So,
the parameter c ∈ R is replaced by a vector c ∈ R

N and Eq. (2.1)
naturally becomes

ẋ =
(

−ax + f
(

Winu + Wx
))

� c, (2.3)

with �c being element-wise (Hadamard) division.

III. PHYSICAL LI-ESN WITH IONTRONIC MEMRISTORS

Consider the circuit schematically drawn in Fig. 1(a) contain-
ing (iontronic) memristors (blue), which we will describe in more
detail in Sec. III A 1. The voltages at the terminals (dashed ellipses)
obey a fixed local current-to-voltage update rule, which we will
describe in detail in Sec. III A 2. We will show in Sec. III B that the
physical circuit design in Fig. 1(a) is equivalent to the general math-
ematical LI-ESN description as in Eq. (2.1). Lastly, in Sec. III C, we
will extend this equivalence to LI-BPNs as in Eq. (2.3).

A. Physical ESN circuit

1. (Iontronic) simple volatile memristors

Memristors, characterized by their history-dependent conduc-
tance, have drawn major interest as fundamental devices for neuro-
morphic computing architectures.32 Consequently, many different
types of memristors with various conductance memory features
exist.33–35 Inspired by the brain’s aqueous medium and ionic sig-
nal carriers, iontronics that rely on ionic transport in an aqueous
environment are emerging as a substrate for neuromorphic comput-
ing implementations.4–8 Of importance to this work is that various
iontronic devices also feature a coupling between their electric prop-
erties and applied pressures,36–38 where, e.g., an applied pressure can
drive a so-called electric streaming current.39,40

The (iontronic) memristors schematically drawn in blue in
Fig. 1(a) are Simple Volatile Memristors (SVMs).41 It has been
demonstrated theoretically14,31 and experimentally12,15 that various
fluidic iontronic memristors behave as SVMs,41 of which the elec-
tric conductance gi(t) is time-dependent and obeys the equation of
motion (EOM),

dgi

dt
=

gi,∞(Vi(t))− gi(t)

τi

. (3.1)

Here, gi,∞(Vi) is the steady-state conductance for a given voltage
Vi, which is typically a sigmoidal function around the equilibrium
conductance gi,0 = gi,∞(0). It has been theoretically derived14,31 and
experimentally observed12,15,17 that the intrinsic memory timescale τi

of various iontronic SVMs scales quadratically with the device length
Li according to

τi ∝
L2

i

D
, (3.2)

where D is the ionic diffusion coefficient, assumed equal for all ionic
species of the aqueous electrolyte involved. Due to its dependence on
Li, the timescale τi can be individually chosen for each SVM across
a wide range, which we will use in Sec. III C to implement the indi-
vidual relaxation times in LI-BPNs. A variety of different iontronic
SVMs are candidates for the circuit we propose here, including
channels where the conductance memory is geometry-based,14,15

surface charge-based,31 colloid-based,12 and polyelectrolyte-based,17

as schematically depicted in Fig. 1(c). Additionally, the power con-
sumption of iontronic memristive devices can be extremely small, as
low as order 10 fW per channel42 (assuming order 1 V driving force).

For our network demonstrations here, we chose to consider
conical channel SVMs,14 but the results are representative of any
SVM with a sigmoidal steady-state conductance. Specifically, we
consider microfluidic channels as drawn in the top left of Fig. 1(c)

FIG. 1. (a) Schematic of a physical leaky integrator echo state or band-pass network circuit containing (iontronic) simple volatile memristors. Resistors are connected in
parallel to the memristors with conductances equal to the equilibrium conductance of their respective parallel memristors. The terminals at either end of the memristors convert
the incoming currents of neighboring memristor–resistor pairs to voltages of the next time step. For simplicity, only the inputs to and coupling between i and j memristors are
included. The connections in this schematic are for illustrative purposes only and do not represent a specific circuit topology used in this work. (b) Dimensionless conductance
g (blue), acting as a physical activation function in the circuit, compared to the standard ESN tanh activation function19 (red). (c) Several candidate iontronic simple volatile
memristors where the conductance memory is geometry-based (top left),14,15 surface charge-based (top-right),16,31 colloid-based12 (bottom left), and polyelectrolyte-based
(bottom right).17 All results in this work are from geometry-based iontronic memristors.14
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with a base radius Rb = 200 nm, a tip radius Rt = 50 nm, a charge on
the channel’s surface of −2.4 × 10−22 C/nm2, filled with an aque-
ous 1:1 electrolyte with equilibrium ion concentrations of 0.1 mM
for both the positive and negative ions. The conductance of the
channel is voltage-dependent and shown in Fig. 1(b) in blue (nor-
malized and centered around 0). The proportionality constant in
Eq. (3.2) can vary between iontronic devices, but the channels14 fea-

ture the relation τi =
L2

i
12D

, with lengths that can be fabricated from
nm lengths43,44 all the way to mm length45 scales, theoretically cor-
responding to a broad timescale range from ∼ 10−9 s up to ∼ 103 s
domains. While experimental evidence for the full range is still lim-
ited, the order ∼ 0.1 − 1 s timescales that we will use here have been
observed experimentally.12,15,46 The lengths Li of the channels vary
between different network applications, and even within individual
networks for BPNs, to implement the different timescales τi as per
Eq. (3.2). The full detailed physics and remaining parameters are
described in the Appendix.

2. Current-to-voltage update rule

Consider the circuit schematically drawn in Fig. 1(a), where
voltage terminals (dashes ellipses) connect parallel pairs of an
Ohmic resistor and an SVM, here in the form of cone-shaped ion-
tronic microfluidic channels14 (blue). Memristors are two-terminal
devices with Vi,t and Vi,b the voltages at the tip and base terminal,
respectively, defined such that the voltage Vi = Vi,t − Vi,b over the
SVM increases the conductance for positive Vi. Between the ter-
minal pairs, two currents flow in parallel, a current Ii = gi(t)Vi(t)
through the SVM and a current Ii,0 = gi,0Vi(t) through the resistor
with a fixed conductance gi,0. The terminals obey the same update
rule for the tip and base voltages Vi,t and Vi,b, which depends on the
currents Ij and Ij,0 of the neighboring terminals according to

Vi,t =
∑

j:Wij>0

Wij

(

Ij

Ij,0
− 1

)

a−1 +
∑

j:Win
ij >0

Win
ij uj(t), (3.3)

Vi,b =
∑

j:Wij<0

∣

∣Wij

∣

∣

(

Ij

Ij,0
− 1

)

a−1 +
∑

j:Win
ij <0

∣

∣

∣
Win

ij

∣

∣

∣
uj(t). (3.4)

Here, Wij, Win
ij , and a are fixed and known a priori, and Ij(t) and

I0,j(t) are physical currents that only need to be measured locally.
Lastly, uj(t) is the dynamic input. Depending on the input type,
the input can feature an additional scaling factor sin ∈ R such
that uj(t) = sinũj(t). This factor can fix the units and ensure the
input stays within a reasonable ∼ ±1 V voltage regime. Notably,
in Sec. IV C, uj(t) will receive its own local (pressure-to-)current-
to-voltage update rule, where we analyze biological pressure signals
as inputs by placing additional microfluidic channels between the
pressure source and the SVM terminals. In such microfluidic chan-
nels, pressures are known to drive (electrical) streaming currents
through the channels,39,40 which can then be converted according to
a current-to-voltage update rule similar to Eq. (3.3), thereby provid-
ing a direct physical conversion between a biological signal and the
ESN or BPN input without any intervention or interaction required
from outside the network.

Although some functionality is assumed for the peripheral
circuits at the terminals, this concerns only a straightforward con-
version of locally measured currents to voltages with some a priori
known fixed parameters. The use of peripheral circuitry for current-
to-voltage conversions is relatively standard within neuromorphics,
e.g., in the common neuromorphic circuits of coupled crossbar
arrays that emulate artificial neural network current-to-voltage con-
verters are employed to transform one array’s current outputs to
another array’s voltage inputs.47

B. Physical circuit and LI-ESN equivalence

For simplicity, let us initially consider all SVMs have equal
length Li = L and, therefore, equal timescales τi = τ . In Sec. III C,
we will make the straightforward extension to a range of timescales
τττ ∈ R

N, equivalent to a band-pass network. We will show that
the physical circuit design in Fig. 1(a) is equivalent to the general
mathematical LI-ESN description as in Eq. (2.1). The circuit will
thereby be endowed with all its relevant derived properties, capa-
bilities, and understandings,19–26 while the actual dynamics emerge
from the intrinsic physics of the circuit, rather than numerically
solving Eq. (2.1) in software. Specifically, the conductance EOM,
Eq. (3.1), and steady-state conductance gi,∞(Vi) naturally assume the
role of the ESN dynamics and the activation function. Furthermore,
the relative polarity of the voltage depending on the orientation of
the SVMs provides a natural method to encode either positive or
negative (adjacency) weight elements.

We introduce a straightforward conversion to a dimension-
less conductance gi(t) normalized by gi,0 = gi,∞(0), the equilibrium
conductance

gi(t) =
gi(t)− gi,0

agi,0
, (3.5)

gi,∞(Vi) =
gi,∞(Vi)− gi,0

gi,0
≈ tanh(Vi). (3.6)

We stress that all results presented in this work exclusively use
the physical function gi,∞(Vi)

14 for the activation function gi,∞(Vi),
shown in blue in Fig. 1(b), alongside the function tanh(Vi) (red).
The abovementioned similarity gi,∞(Vi) ≈ tanh(Vi) only serves to
support the equivalence to LI-ESNs.

The EOM of gi(t) is straightforwardly found through Eq. (3.1)
as follows:

dgi

dt
=

1

agi,0

(

gi,∞(Vi)− gi,0

)

−
(

gi(t)− gi,0

)

τ

=
gi,∞(Vi)− agi(t)

aτ
.

In vector notation, this becomes

dggg

dt
=

g∞(V)− aggg(t)

aτ
, (3.7)

where g∞(V) is applied element-wise to V.
Memristors are two-terminal devices with voltages Vi,t and Vi,b

at either terminal, respectively, here defined such that the voltage
Vi = Vi,t − Vi,b over the SVM increases the conductance for positive
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voltages. Both terminals have identical voltage update rules, which
we now show are coupled to g as follows:

Vi,t =
∑

j:Wij>0

Wij

(

Ij

Ij,0
− 1

)

a−1 +
∑

j:Win
ij >0

Win
ij uj(t)

=
∑

j:Wij>0

Wij

gj(t)Vj − gj,0Vj

agj,0Vj

+
∑

j:Win
ij >0

Win
ij uj(t)

=
∑

j:Wij>0

Wijgj +
∑

j:Win
ij >0

Win
ij uj.

Similarly,

Vi,b =
∑

j:Wij<0

∣

∣Wij

∣

∣ gj(t)+
∑

j:Win
ij <0

∣

∣

∣
Win

ij

∣

∣

∣
uj(t).

Therefore, the voltage over the SVM is given by

Vi = Vi,t − Vi,b =
∑

j:Wij>0

Wijgj −
∑

j:Wij<0

∣

∣Wij

∣

∣ gj

+
∑

j:Win
ij >0

Win
ij uj −

∑

j:Win
ij <0

∣

∣

∣
Win

ij

∣

∣

∣
uj, (3.8)

where we now see that negative weights are naturally encoded
through the voltage sign reversal. Moreover, we see that the current-
to-voltage conversion rule in Eq. (3.3) is equivalent to a matrix
multiplication with the dimensionless conductances gi(t).

Compactly, Eq. (3.8) can be written in matrix vector notation as

V = Wggg + Winu (3.9)

such that ggg evolves according to

dggg

dt
=

g∞(W
inu + Wggg)− aggg(t)

aτ
(3.10)

which we recognize as (the arguments inside) the activation func-
tion f in Eq. (2.1). Therefore, the straightforward current-to-voltage
update role described in Eq. (3.3) facilitates the matrix coupling
between the nodes. This does require that the voltages can be
adjusted quasi-instantaneously compared to the timescale τ of the
SVM. To complete the equivalence to Eq. (2.1), let us consider the
identifications,

g∞(x) ≈ tanh(x) ↔ f(x),

ggg(t) ↔ x(t),

aτ ↔ c.

We now see that Eq. (3.10) is identical to Eq. (2.1), while being
completely physically facilitated in the circuit shown in Fig. 1(a).

Above we described how the dynamics of the circuit depicted in
Fig. 1(a) are equivalent to the ESN dynamics as per Eq. (2.1). More-
over, since applying the input and reading the output are performed
by standard matrix multiplications Winu and Woutx, respectively,
these actions too can be physically realized using crossbar arrays,
which too could be implemented using ionic devices.48–54 Therefore,

excitingly, the full (ionic) hardware implementation of our LI-ESN
circuit should be directly physically possible.

C. Physical LI-BPN

Because each SVM can straightforwardly be designed to feature
its own timescale τi ∝ L2

i /D by varying the length Li of the individual
devices, we can easily go beyond ESNs to BPNs, which are known to
perform considerably better on input tasks that feature components
that span multiple frequencies.27

Varying the lengths between the different SVMs corresponds to
converting τ to a vector τ → τττ ∈ R

N such that Eq. (3.10) becomes

dggg

dt
=

g∞(W
inu + Wggg)− aggg(t)

a
� τττ , (3.11)

with �τττ being element-wise (Hadamard) division. We note that the
dimensionless gi,∞(V) is independent from Li, so the extension from
Eq. (3.10) remains valid. With the same identification steps as in
Sec. III B, we see that Eq. (3.11) is equivalent to the mathematical
description of LI-BPNs as in Eq. (2.3). Therefore, the circuit depicted
in Fig. 1(a) can be designed to be either an ESN or BPN, depending
on whether the channel lengths vary.

IV. TIME SERIES ANALYSIS TASKS

A. Mackey–Glass time series

To reproduce some of the known capabilities of LI-ESNs, and
to compare to the time series prediction performance of other meth-
ods, we use our iontronic SVM based circuit to predict the synthetic
Mackey–Glass55 time series P(t). This time series is one of the most
common generated data sets to test ESNs on,56 generated by

dP(t)

dt
=

βP(t − tdelay)

θ + P(t − tdelay)
n − γP(t), (4.1)

where we use β = 0.2, θ = 1, γ = 0.1, n = 10, and tdelay = 17. The
first 17 time steps are randomly generated values in the range
[−1, 1). For the aforementioned parameters, Eq. (4.1) is known to
feature a chaotic attractor.57 As in Ref. 21, Eq. (4.1) is then rescaled
P(t) 7→ tanh(P(t)− 1) such that P(t) ∈ [−1, 1] for all t.

A reservoir was used with parameters inspired by Ref. 21 of
K = 1, N = 400, and L = 1, a network sparsity of 0.75, spectral
radius of 0.95, c = 2.27 s, δ = 1 s, a leaking rate of a = 0.95, and an
input scaling of sin = 0.45 V. The output matrix Wout was trained
on a test set of length 3000 s using ridge regression29 discarding the
first 100 s as a washout. Testing was done on a newly generated
Mackey–Glass series with the same parameters, but a different ran-
dom initialization of the first 17 steps. We distinguish between a
washout period, where only the next time (1 s) step needs is pre-
dicted with the true signal as input, and free-running classification,
where the network receives its own output as input for the next time
step while receiving no information from the true signal. The result-
ing washout period (t < tfree = 1000 s) and free-running (t > tfree

= 1000 s) predictions are shown in Fig. 2(a).
In Fig. 2(a), we see that the network with N = 400 is able to

accurately predict the Mackey–Glass series for several 100 s. To
quantify this performance and to compare it to previous results,
we calculate the normalized root mean squared error (NRMSE)

Chaos 35, 093133 (2025); doi: 10.1063/5.0273574 35, 093133-5

© Author(s) 2025

 14 Septem
ber 2025 15:03:30

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 2. (a) Mackey–Glass series predictions from a physical LI-ESN circuit containing iontronic conical channel memristors.14 For t < 1000, only the next step is predicted
(with time stepsize of δ = 1 s), for t > 1000, the network receives no further input from the true time series and uses its own predicted output as input for the next step.
Predicting 84 steps ahead yielded a RMSE of RMSE84 ≈ 0.001, averaged over 20 network initializations, comparable to earlier results using LI-ESNs21 and outperforming
several neural network based approaches.58,59 (b) Harmonic time series predictions of an LI-ESN (red) and LI-BPN (green) containing 12 iontronic SVMs, showing that
LI-ESNs struggle with the variations in signal timescales.

of the prediction P̂i(tfree + 84) with the true value Pi(tfree + 84).
This entails that we compare the output of the network after it
received its own prediction as input for 84 steps (i.e., 84 s into free-
running mode), which we average over T = 20 different random
initializations of the LI-ESN, according to

NRMSE84 =

√

√

√

√

√

T=20
∑

i=1

(

P̂i(tfree + 84)− Pi(tfree + 84)
)2

σ 2T
,

with σ 2 ≈ 0.05 being the variance of the input data.
With our fully physically realizable circuit, we find NRMSE84

≈ 0.008 on the test series. This outperforms other approaches, such
as self-organizing feature map models reaching NRMSE84 ≈ 0.022
for a comparable training set size60 (which is the best performance in
survey Ref. 61), and various neural network based approaches58,59,62

that achieve NRMSE84 & 0.1 (converting from RMSE to NRMSE
assuming similar σ 2). This performance in and of itself is not sur-
prising, as LI-ESNs with 400 nodes have long been shown to be
capable of this.21 Therefore, recreating this using the physical coni-
cal channel SVM equations supports our claim of this work that our
physical circuit is equivalent to these ESNs and thereby to all their
capabilities.

Notably, in both predictions shown in Fig. 2, we use the
physical steady-state conductance g∞(V) as a activation function.14

Moreover, we are able to translate the parameters a and c to the
physical length of the memristors, which for the results of Fig. 2(a),
with diffusion coefficient D = 1µm2 ms−1, would be L = 169µm.
Otherwise, the remaining parameters (e.g., channel radius, salt con-
centration, surface charge, etc.) are as briefly reported in Sec. III A 1
and in full detail in the Appendix.

B. Band-pass network for multi-frequency signals

All nodes in LI-ESNs feature the same universal relaxation
timescale c. Therefore, LI-ESNs can struggle with inputs that incor-
porate signal timescales of different magnitudes,27 whereas LI-BPNs
have an inductive bias toward multi-frequency signals due to their
heterogeneous timescales.27,30 This increase in model capacity can
straightforwardly be physically embedded by varying the length of
the iontronic SVMs, as discussed in Sec. III A 1. To demonstrate
this, we compare small N = 12 LI-ESNs and LI-BPNs. The hyperpa-
rameters of both are optimized with the optuna framework (version
4.4.0)63 using the default tree-structured Parzen estimator algorithm,
optimization code with all details is available online.28 The optimiza-
tions were for predicting a simple harmonic function that features
oscillations on a ∼1 and ∼10 s scale given by

yhar(t) = sin(t) cos(1.2t),

which is discretized with time step sizes of δ = π/10 s. The networks
were trained on a domain of [0, 80π]. First, we consider a small
LI-ESN of K = 1, N = 12, and L = 1, a network sparsity of 0.67, a
timescale of c = 1.87 s, a leaking rate of a = 0.44, a spectral radius of
0.32, and an input scaling of sin = 0.26 V. The output matrix is again
trained using ridge regression29 with a regularization of 4 × 10−5. All
results presented below did not appear to be sensitive to the precise
hyperparameters.

The resulting ESN predictions can be seen in the red curve of
Fig. 2(b), where it is clear that the LI-ESN is not able to capture
the shorter timescale oscillations. Shortening the timescale c of the
ESN did allow it to also predict also these shorter oscillations dur-
ing the washout period (i.e., with the true signal as input), but then
the network quickly diverged in free-running mode, leading to a
worse overall performance. Since we only model 12 SVM nodes with
weights that are randomly generated, there is significant variability
between different initializations. However, these observations were
robust and the LI-ESN consistently performed poorly on predicting
the time series, as we will quantify below.
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Converting our LI-ESN to a similarly sized LI-BPN signifi-
cantly improves the performance. In this case, timescales are drawn
from a normal distribution Ci ∼ N(µc, σ 2

c ), with µc = 2.79 s and
σc = 9.9 s, such that the timescale of each SVM node is set by
ci = max(µc/5,Ci) to ensure all timescales are positive. More
sophisticated methods of choosing the timescales can be considered,
but for now, this simple approach is sufficient to demonstrate the
benefits that LI-BPNs provide. Furthermore, the BPN features a net-
work sparsity of 0.35, a leaking rate of a = 0.86, a spectral radius of
0.76, an input scaling of sin = 0.21 V, and a regularization for ridge
regression of 1 × 10−6.

As shown in the green curve of Fig. 2(b), the resulting LI-BPN
can successfully predict the time series with only 12 nodes. Again,
there is some variability between different initiations of the small
network, but the improved performance was consistent. The RMSE
of predicting the free-running domain shown in Fig. 2(b) (for
[20,π , 40π]), averaged over 100 different ESN and BPN initiations,
shows that the LI-BPN features a factor 3 lower RMSE (≈ 0.04)
than the LI-ESN (≈ 0.13). Quantitatively this seems like a somewhat
marginal difference, but this is indicative of the qualitative obser-
vation that the higher frequency oscillations are not captured by
the ESN circuit. We stress that physically, this conversion from an
ESN to BPN is straightforward, as the variability in timescales can
be realized on-chip through varying the channel lengths.

C. Airway pressure as direct physical input

Thus far, we have provided demonstrations of analyzing some
synthetic time series with LI-ESNs and LI-BPNs containing ion-
tronic SVMs. Here, we will consider measurements of ventilator
pressures that were designed to accurately mimic the airway pres-
sures present in lungs during breathing.64 For this task, we will
leverage two useful properties of iontronic SVMs: (i) their tun-
able timescales that coincide with timescales of natural or biological

origin and (ii) the intrinsic responsiveness of iontronic systems to
pressure inputs.

As schematically shown in the blue curve of Fig. 3(a), the input
pressure is applied at one end of a cylindrical microfluidic chan-
nel, Fig. 3a, (bottom), of length L = 200µm and radius R = 25µm,
carrying a typical surface potential of ψ0 = −40 mV. These chan-
nels feature a coupling between pressure and electric (ionic) current,
specifically the resulting pressure drop 1p(t) drives a so-called
electric streaming current [red curve of Fig. 3(a)] given by40

Ip(t) = πR2 εψ0

η

1p(t)

L
,

with η and ε being the shear viscosity and electric permittivity of
water. The length L and radius R of the channel are chosen such
that for the typical biological pressure signal amplitude of ∼10 mbar,
the streaming current Ip(t) will be of order ∼1 nA. This is a current
strength that can be reliably measured for single channels driven
by pressure.36,39 The ionic streaming current becomes the input
u(t) = sinIp(t). Similar to how the ionic currents through the SVMs
are converted to voltage contribution updates within the terminals,
the streaming current can now be directly coupled to the SVMs
such that the voltage contribution sinIp(t)W

in
i of the inputs is as per

Eq. (3.3).
Using the ventilator pressure data,64 an example of which is

shown (blue) in Fig. 3(a), we perform two tasks. First, the easier task
of classifying whether the expiratory valve (i.e., the valve that lets air
out) is open or closed, and then the harder task of predicting three
steps (≈0.1 s) ahead, i.e., pressure is applied as input and the goal
is to predict step n + 3 when at step n. The data were split into two
parts for training and testing, an 80 000 step (i.e., 2700 s) segment
for training, and a different 20 000 step (i.e., 680 s) segment for test-
ing (in both instances discarding the first 1000 steps as washout).
Hyperparameters were optimized for analyzing ventilator pressure
data again with optuna framework (version 4.4.0),63 using the default

FIG. 3. (a) Schematic depiction of how the applied (airway) pressure (blue graph) drives an electric streaming current (red graph) through a cylindrical microfluidic channel
(bottom).39,40 This ionic current is then converted to voltage updates in the terminals of the iontronic SVMs, similar to how the ionic currents through the memristors are
coupled to the neighboring nodes. The connections in this schematic are for illustrative purposes only and do not represent a specific circuit topology used in this work.
(b) Results of a classification task (top graph) of whether the expiratory valve (i.e., the valve that lets air out) is open or closed, using a small LI-BPN consisting of seven
iontronic SVMs. Additionally, a prediction task (bottom graph) of what the pressure will be 0.1 s in the future using a LI-BPN containing 200 iontronic SVMs. The inset shows
that<0.1 s variations in the pressure are predicted by the network.
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tree-structured Parzen estimator algorithm, optimization code with
all details is available online.28 The resulting LI-BPNs feature a net-
work sparsity of 0.017, time step δ = 0.034 035 s (matching with the
data), timescale parameters µc = 0.27 s and σc = 1.89 s, input scal-
ing sin = 0.11 V/nA, a leaking rate of a = 0.98, and a regularization
of 1.69 × 10−6.

In the top graph of Fig. 3(b), we show the valve classifications in
red, compared to the true value in blue, corresponding to the input
depicted in Fig. 3(a). For these classifications, a small LI-BPN cir-
cuit was modeled with only N = 7 iontronic SVMs, achieving ∼91%
on the test data accuracy averaged over 20 initializations. For com-
parison, we carried out the same task with a linear autoregression
model of order 7 such that the number of fit-parameters matches
the LI-BPN, achieving a lower accuracy of ∼ 82%. This is partially
because such a model only uses a slim window of the last seven time
steps for its classification. Spreading out this window through sub-
sampling by using the values 8 m steps back, with m ∈ {1, 2, . . . , 7},
improves accuracy to 90%, almost matching the LI-BPN. However,
it is not directly clear how a simple hardware implementation of
such a (pressure-driven) autoregression model would be achieved,
especially in the more complicated subsampling approach.

In the bottom graph of Fig. 3(b), we show the pressure pre-
dictions using a larger LI-BPN circuit containing N = 200 SVMs
(otherwise the same parameters). Each point in the red graph is a
prediction of 0.1 s ahead, achieving an RMSE of ≈ 3.0 mbar (mea-
sured over the full test data length). This is a slight improvement
over the RMSE of ≈ 3.2 mbar achieved with a linear autoregres-
sion model of order 200, where we again note that it is not directly
clear how such a (pressure-driven) autoregression model can be
straightforwardly directly physically implemented like the LI-BPN.
Although most individual pressure waves are longer than the pre-
diction window of 0.1 s, there are certainly <0.1 s features within
each pressure wave that are still correctly predicted by the network,
as shown in the inset in the bottom graph of Fig. 3(b). We note that
this task is especially difficult because normally multiple parame-
ters accompany each individual waveform,64 whereas here we solely
provide the pressure as input.

V. DISCUSSION AND CONCLUSION

In summary, we proposed a physical circuit design that exhibits
a one-to-one correspondence to the well-established mathematical
description of the reservoir computing frameworks of leaky integra-
tor echo state and band-pass networks.19–27 This circuit incorporates
fluidic iontronic memristors,4–8 whose voltage-dependent conduc-
tance and conductance memory facilitate the activation function
and dynamics of the nodes, respectively. The terminals at either
end of the memristors feature fixed peripheral circuits that convert
locally measured currents to voltages, forming a physical realiza-
tion of the matrix coupling between nodes. By solving the physi-
cal equations of microfluidic conical channel memristors14 within
such a circuit, we successfully analyze several signals such as the
Mackey–Glass time series, supporting our claim that such a circuit
is a physical manifestation of LI-ESNs and LI-BPNs.

A desirably property of these iontronic memristors is the
dependence of their conductance memory timescale on the channel

length, i.e., each memristor can individually be designed to fea-
ture a certain relaxation time. This corresponds to going from a
LI-ESN to a LI-BPN, which are known to perform significantly bet-
ter on inputs that feature multiple timescales,27 demonstrated here
by showing a circuit with channels of differing lengths, i.e., a physical
LI-BPN circuit, performs significantly better on predicting a har-
monic time series with features across different timescales than a
physical LI-ESN.

Lastly, we leverage another unique property of microfluidic
devices, their intrinsic responsiveness to applied pressures. Applied
pressures can drive electric currents through microfluidic channels,
allowing a pressure signal to be converted to an ionic current. By
coupling this to the existing current-to-voltage conversion in the
terminals through an additional input channel, the pressure is con-
verted to the network’s input without any intervention or interaction
required from outside the network. We demonstrated this by classi-
fying and predicting features of simulated biophysically realistic data
of airway pressures during breathing.64

Some functionality of our proposed circuit design lies in the
peripheral circuitry that connect the terminals of the memristors,
namely, converting currents of neighboring memristors to updated
voltages. Current-to-voltage converting peripheral circuits are com-
mon within neuromorphics,47 supporting that such circuitry can
efficiently be implemented. We ignored device noise in this study,
assuming that the currents through the memristors can be accurately
and reliably measured. Interestingly, LI-ESNs have also been theo-
retically studied with noise,19,20,26 so both from a theoretical and from
a physical implementation perspective, this is an interesting direc-
tion to study next. Additionally, analyzing more real-world data,
such as other biological (pressure) sources or chemical signals,65–67

would be a relevant expansion. Lastly, optimizing the circuit design
for specific tasks could be of interest, as our focus here was primar-
ily on establishing the correspondence between our physical circuit
design and LI-ESNs or LI-BPNs, not on optimization.

With power consumptions of iontronic memristive devices as
low as order 10 fW per channel,42 the overall circuit could poten-
tially operate at very low power, where we leave a more thorough
estimate for future work. The energy usage will also depend on the
peripheral circuit, which can be a significant contributor to power
consumption,68 and on its ability to integrate such low power (sub)-
nanoscale devices. Input and output actions, performed by standard
matrix multiplications, could also be physically realized using cross-
bar arrays implemented with (ionic) devices,48–54 further supporting
our design as a fully physically realizable low power echo state or
band-pass network circuit.

In conclusion, our proposed iontronic memristor based physi-
cal circuit design is theoretically equivalent to the well-established
reservoir computing methods of leaky integrator echo state and
band-pass networks. This is supported by performing several time
series prediction and classification tasks. The fluidic devices do
not necessarily need to be integrated in a fully fluidic circuit,
thereby circumventing existing challenges of manufacturing inte-
grated fully fluidic chips.69 Notably, airway pressure signals were
used as inputs, leveraging iontronics’ intrinsic pressure responsive-
ness and natural timescales matching biology, with pressure classi-
fication tasks achieved using as few as seven memristors. Therefore,
this work provides a design that can advance the field of iontronic
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(neuromorphic) computing, while exploiting some of iontronics’
intrinsic properties.
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APPENDIX: CONICAL CHANNEL CONDUCTANCE

This appendix is a summary of the results described in Ref. 14.
We consider an azimuthally symmetric single conical channel,
schematically depicted in Fig. 1c, (top left), of length L (given
for each specific network in the main text) with the central axis
at radial coordinate r = 0 and a radius described by R(x) = Rb

− x1R/L for x ∈ [0, L], where Rb = 200 nm is the base radius at
x = 0, and Rt = Rb −1R = 50 nm, the tip radius at x = L � Rb.
The channel connects two bulk reservoirs of an incompressible
aqueous 1:1 electrolyte with viscosity η = 1.01 mPa s, mass den-
sity ρm = 103 kg m−3, and electric permittivity ε = 0.71 nF m−1,
at the far side of both reservoirs we impose a fixed pressure
P = P0 and fixed ion concentrations ρ± = ρb = 0.1 mM. The
channel wall carries a uniform surface charge density
eσ = −0.0015 enm−2, screened by an electric double layer with
Debye length λD ≈ 10 nm, resulting in an electric surface potential
of ψ0 ≈ −10 mV. The ions have concentrations ρ±(x, r), diffusion
coefficients D± = D = 1µm2 ms−1, and charge ±e with e being the
proton charge. Over the channel, we impose an electric potential
V(t), defined as the voltage Vt(t) in the tip reservoir minus the
voltage Vb(t) in the base reservoir.

The steady-state conductance of a conical channel depends
on the voltage-dependent radially averaged salt concentration pro-
file ρs(x, V) = 2

∫ R(x)

0 r(ρ+(x, r)+ ρ−(x, r))dr/R(x)2 that exhibits
salt concentration polarization upon an applied voltage. The con-
sequent voltage-dependent steady-state channel conductance is

described by37

g∞(V)

g0
=

∫ L

0
ρs(x, V)dx/(2ρbL)

= 1 +1g

∫ L

0







x

L

Rt

R(x)
−

e
Pe(V) x

L

R2
t

RbR(x) − 1

e
Pe(V) Rt

Rb − 1






dx/L, (A1)

where g0 = (πRtRb/L)(2ρbe
2D/kBT), Pe(V) = Q(V)L/(DπR2

t ) the
Péclet number at the narrow end, Q(V) = −πRtRbεψ0/(ηL)V
the volumetric fluid flow through the channel, and 1g ≡ −e
1RησD/(ρbRbRtεψ0kBT).

The dynamic (dimensional) conductance g(t) is well described
by14

dg(t)

dt
=

g∞(V(t))− g(t)

τ
, (A2)

with τ = L2/12D being the typical conductance memory time of the
channel.
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